Self Studies

Integrals Test - 61

Result Self Studies

Integrals Test - 61
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$\displaystyle\int^{\lambda}_0\dfrac{y}{\sqrt{y+\lambda}}dy=?$$
    Solution

  • Question 2
    1 / -0
    The integral $$\int { \dfrac { { sin }^{ 2 }\times { cos }^{ 2 }\times  }{ { (sin }^{ 5 }\times +{ cos }^{ 3 }\times { sin }^{ 2 }\times +{ sin }^{ 3 }\times { cos }^{ 2 }\times +{ cos }^{ 5 }{ \times ) }^{ 2 } }  } $$dx is equal to:
    Solution

  • Question 3
    1 / -0
    $$\int_{1}^{\infty }(e^{x+1}+e^{3-x})^{-1}dx$$ is equal to: 
    Solution

  • Question 4
    1 / -0
    The value of the integral $$\displaystyle \int _{ { e }^{ -1 } }^{ { e }^{ 2 } }{ \left| \frac { \log _{ e }{ x }  }{ x }  \right| dx } $$ is
    Solution

  • Question 5
    1 / -0
    The value of the integral $$\displaystyle \int _ { 0 } ^ { 1 } \dfrac { d x } { x ^ { 2 } + 2 x \cos \alpha + 1 }$$ , where $$0 < \alpha < \dfrac { \pi } { 2 } ,$$ is equal to
    Solution
    $$ \int_{0}^{1}\frac{dx}{x^{2}+2x\, cos\, \alpha +1} = \int_{0}^{1}\frac{dx}{x^{2}+2x\, cos\, \alpha +cos^{2} \alpha +sin^{2}\alpha }$$
    $$ = \int_{0}^{1}\frac{dx}{(x+cos\,\alpha )^{2}+sin^{2}\alpha } $$
    $$ = \frac{1}{sin\,\alpha } \left [ tan^{-1} \left ( \frac{x+cos\,\alpha }{sin\,\alpha } \right ) \right ]_{0}^{1}$$
    $$ = \frac{1}{sin\,\alpha } \left [ tan^{-1}\left ( \frac{1+cos\alpha }{sin\,\alpha } \right )- tan^{-1}\left ( \frac{cos\, \alpha }{sin\,\alpha } \right ) \right ]$$
    $$ = \frac{1}{sin\, \alpha } \left [ tan^{-1}\left ( \frac{2\, cos^{2}\alpha /2}{2\, sin\, \alpha /2 \, cos\,\alpha /2} \right ) - tan^{-1}\left ( cot\alpha  \right )\right ]$$
    $$ = \frac{1}{sin \, \alpha} \left [ tan^{-1}\left ( cot+\,\alpha/2 \right ) - tan^{-1}\left ( cot\alpha \right ) \right ]$$
    $$ = \frac{1}{sin\, \alpha}\left [ tan^{-1}\left ( tan\left ( \pi /2 - \alpha/2 \right ) \right ) - tan^{-1}\left ( tan\left ( \pi /2 - \alpha \right ) \right ) \right ]$$
    $$ = \frac{1}{sin \alpha} \left [ \pi/2 - \alpha/2 - \pi/2 + \alpha \right ]$$
    $$ = \frac{\alpha}{2 sin\, \alpha}$$

  • Question 6
    1 / -0
    $$\displaystyle \int _ { 0 } ^ { \pi / 4 } \frac { x \cdot \sin x } { \cos ^ { 3 } x } d x$$ equals to :
    Solution
    Let $$I=\displaystyle\int_{0}^{\pi/4}\dfrac{x.\sin x}{\cos^3 x}dx$$

    Applying by-parts formula, we get

              $$=\displaystyle\left[\dfrac{x}{2\cos^2 x}\right]_0^{\pi/4}-\int_{0}^{\pi/4}\dfrac{1}{2\cos^2 x}dx$$

              $$=\displaystyle\dfrac{\dfrac{\pi}{4}}{2\left(\dfrac{1}{\sqrt{2}}\right)^2}-0-\int_{0}^{\pi/4}\dfrac{\sec^2 x}{2}dx$$

              $$=\dfrac{\pi}{4}-\dfrac{1}{2}\left[\tan x\right]_0^{\pi/4}$$

              $$=\dfrac{\pi}{4}-\dfrac{1}{2}\left[\tan \dfrac{\pi}{4}-\tan 0\right ]$$

              $$=\dfrac{\pi}{4}-\dfrac{1}{2}[1-0]$$

              $$=\dfrac{\pi}{4}-\dfrac{1}{2}$$
  • Question 7
    1 / -0
    $$\int_{0}^{\frac{1}{2}}\frac{xsin^{-1}x}{\sqrt{1-x^{2}}}dx$$ is equal to
    Solution

  • Question 8
    1 / -0
    Value of the definite integral $$\displaystyle \int_{-1}^{1}\dfrac {dx}{(1+x^{3}+\sqrt {1+x^{6}})}$$
    Solution

  • Question 9
    1 / -0
    If $$f(x)=\begin{vmatrix} \cos { x }  & 1 & 0 \\ 1 & 2\cos { x }  & 1 \\ 0 & 1 & 2\cos { x }  \end{vmatrix}$$ then $$\displaystyle\int _{ 0 }^{ \pi /2 }{ f\left( x \right) } dx$$ is equal to 
    Solution

  • Question 10
    1 / -0
    The value of $$\int_{0}^{[x]} (x-[x])dx$$, where $$[x]$$ is the greatest integer $$|le x$$ is equal to
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now