Self Studies

Integrals Test - 67

Result Self Studies

Integrals Test - 67
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$\frac { 1 }{ \pi  } \int _{ -2 }^{ 2 }{ \frac { 1 }{ 4+{ x }^{ 2 } } dx= } $$
    Solution

  • Question 2
    1 / -0
    $$\overset { -5 }{ \underset { -4 }{ \int }  } e^(x + 5)^2 dx + 3  \overset { 2/3}{ \underset { 1/3 }{ \int }  } e^9(9(x-2/3)^2$$ dx is equal toi 
    Solution

  • Question 3
    1 / -0
    For $$\displaystyle x\in \,R$$ let $$f(x)=|\sin\,x|$$ and $$g(x)=\int^x_0\,f(t)dt.$$ Let $$p(x)=g(x)-\dfrac{2}{\pi}x$$. Then
    Solution
    Given:$$f\left(x\right)=\left|\sin{x}\right|$$
    $$g\left(x\right)=\displaystyle\int_{0}^{x}{f\left(t\right).dt}$$
    $$p\left(x\right)=g\left(x\right)-\dfrac{2}{\pi}x$$

    Now, $$p\left(x+\pi\right)=g\left(x+\pi\right)-\dfrac{2}{\pi}\left(x+\pi\right)$$
    $$=\displaystyle\int_{0}^{\pi+x}{f\left(t\right)\,dt}-\dfrac{2}{\pi}x-2$$
    $$=\displaystyle\int_{0}^{\pi}{f\left(t\right)\,dt}+\displaystyle\int_{\pi}^{\pi+x}{f\left(t\right)\,dt}-\dfrac{2}{\pi}x-2$$
    $$f\left(x\right)$$  is periodic function with period $$\pi\,\,\,\therefore\,\,\displaystyle\int_{\pi}^{\pi+x}{f\left(t\right)dt}=\displaystyle\int_{0}^{x}{f\left(t\right)dt}$$
    $$\Rightarrow\,p\left(x+\pi\right)=\displaystyle\int_{0}^{\pi}{\left|\sin{x}\right|dx}+g\left(x\right)-\dfrac{2}{\pi}x-2$$
    $$=2+g\left(x\right)-\dfrac{2}{\pi}x-2$$
    $$\Rightarrow\,p\left(x+\pi\right)=p\left(x\right)$$ for all $$x$$

  • Question 4
    1 / -0
    The area of the region bounded by the lines $$x = 1, x = 2$$, and the curves $$x(y - e^x) = \sin x$$ and $$2xy = 2 \sin x + x^3$$ is 
    Solution
    Given:$$x\left(y-{e}^{x}\right)=\sin{x}$$
    $$\Rightarrow\,xy-x{e}^{x}=\sin{x}$$
    $$\Rightarrow\,xy=\sin{x}+x{e}^{x}$$
    $$\Rightarrow\,y=\dfrac{\sin{x}}{x}+{e}^{x}$$
    Given:$$2xy=2\sin{x}+{x}^{3}$$
    $$\Rightarrow\,y=\dfrac{\sin{x}}{x}+\dfrac{{x}^{2}}{2}$$
    $$A=\displaystyle\int_{1}^{2}{\left\{\dfrac{\sin{x}}{x}+{e}^{x}-\left(\dfrac{\sin{x}}{x}+\dfrac{{x}^{2}}{2}\right)\right\}dx}$$
    $$=\displaystyle\int_{1}^{2}{\left({e}^{x}-\dfrac{{x}^{2}}{2}\right)dx}$$
    $$=\left[{e}^{x}-\dfrac{{x}^{3}}{6}\right]_{1}^{2}$$
    $$={e}^{2}-\dfrac{8}{6}-\left(e-\dfrac{1}{6}\right)$$
    $$={e}^{2}-e-\dfrac{7}{6}$$
  • Question 5
    1 / -0
    The value of the definite integral $$\displaystyle\int^1_0\dfrac{xdx}{(x^2+16)}$$ lies in the interval $$[a, b]$$. Then smallest such interval is?
    Solution

  • Question 6
    1 / -0
    Let $$I=\overset{1}{\underset{0}{\int}}\dfrac{\sin x}{\sqrt x}dx$$ and $$J=\overset{1}{\underset{0}{\int}}\dfrac{\cos x}{\sqrt x}dx$$. Then which one of the following is true?
    Solution

  • Question 7
    1 / -0
    $$\overset { 1 }{ \underset { -1 }{ \int }  } \dfrac{x^3+|x|+1}{x^2+2|x|+1}$$dx is equal to
  • Question 8
    1 / -0
    Let $$I_{1}=\int_{-2}^{2} \dfrac{x^{6}+3 x^{5}+7 x^{4}}{x^{4}+2} d x$$ and$$I_{2}=\int_{-3}^{1} \dfrac{2(x+1)^{2}+11(x+1)+14}{(x+1)^{4}+2} d x,$$ then the value of$$I_{1}+I_{2}$$ is
    Solution
    In $$I_{2},$$ put $$x+1=t,$$
    then $$I_{2}=\int_{-2}^{2} \dfrac{2 t^{2}+11 t+14}{t^{4}+2} d t=\int_{-2}^{2} \dfrac{2 x^{2}+11 x+14}{x^{4}+2} d x\\$$
    $$\therefore I_{1}+I_{2} = \\$$
    $$=\int_{-2}^{2} \dfrac{\left(x^{2}+3 x+7\right)\left(x^{4}+2\right)+5 x}{x^{4}+2} d x \\$$
    $$=\int_{-2}^{2}\left(x^{2}+3 x+7\right) d x+5 \int_{-2}^{2} \dfrac{x}{x^{4}+2} d x \\$$
    $$=2 \int_{0}^{2}\left(x^{2}+7\right) d x=\dfrac{100}{3}$$
    (The other integrals are zero, being integrals of odd functions.)
  • Question 9
    1 / -0
    If $$z=x+3i$$ then value of $$\displaystyle\int^4_2\left[arg\left|\dfrac{z-i}{z+i}\right|\right]dx$$, where $$[.]$$ denotes the greatest integer function, is?
    Solution

  • Question 10
    1 / -0
    If $$I=\displaystyle\int^1_0\cos\left(2\cot^{-1}\sqrt{\left(\dfrac{1-x}{1+x}\right)}\right)dx$$ then?
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now