Self Studies

Application of Integrals Test - 15

Result Self Studies

Application of Integrals Test - 15
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Area of the region $$\{(x,y)/x^{2}+y^{2}\leq 1\leq x+y\}$$ is:
    Solution
    Required area $$=$$ Area of quarter in first quadrant $$-$$ Area of $$\triangle AOB$$
    $$=\cfrac{1}{4}\pi(1)^2-\cfrac{1}{2}.1.1 = \cfrac{\pi}{4}-\cfrac{1}{2}$$

  • Question 2
    1 / -0
    The area bounded by the curves $$y=\cos x,y=\cos 2x$$ between the ordinates $$x=0,x=\displaystyle \frac{\pi}{3}$$ are in the ratio
    Solution
    $$y=\cos x,y=\cos 2x$$
    $$\overset{\pi /3}{\underset{0}{\int}}(\cos x)dx$$   area of $$\cos x$$ and area of $$\cos 2x$$
    $$\overset{\pi /4}{\underset{0}{\int}}(\cos 2x)dx-\overset{\pi /3}{\underset{\pi /4}{\int}}(\cos 2x)dx=\dfrac{4-\sqrt{3}}{4}$$
    $$\overset{\pi /3}{\underset{0}{\int}}(\cos x)dx=\dfrac{\sqrt{3}}{2} sq\:units$$
    S0, ratio is $$\dfrac{\sqrt{3}}{2}:\dfrac{4-\sqrt{3}}{4}=2\sqrt{3}:4-\sqrt{3}$$

  • Question 3
    1 / -0
    The area bounded by $$y^{2}=4ax$$ and $$y=mx$$ is $$\displaystyle \frac{a^{2}}{3}$$ sq. units then $$\mathrm{m}$$
    Solution
    The two curves $${ y }^{ 2 }=4ax$$ and $$y=mx$$ intersect at $$\displaystyle \left( \dfrac { 4a }{ { m }^{ 2 } } ,\dfrac { 4a }{ m }  \right) $$
    and the area enclosed by the two curves are given by

    $$\displaystyle \int _{ 0 }^{ \dfrac { 4a }{ { m }^{ 2 } }  }{ \left( \sqrt { 4ax } -mx \right) dx } $$

    $$\displaystyle \therefore \int _{ 0 }^{ \dfrac { 4a }{ { m }^{ 2 } }  }{ \left( \sqrt { 4ax } -mx \right) dx } =\dfrac { { a }^{ 2 } }{ 3 } $$

    $$\displaystyle \Rightarrow \dfrac { 8 }{ 3 } .\dfrac { { a }^{ 2 } }{ { m }^{ 3 } } =\dfrac { { a }^{ 2 } }{ 3 } \Rightarrow { m }^{ 3 }=8\Rightarrow m=2$$
  • Question 4
    1 / -0
    Area of the segment cut off from the parabola $$x^{2}=8y$$ by the line $$x-2y+8=0$$ is:
    Solution
    $$x^{2}=8y$$ and $$x-2y+8=0$$
    $$x^2=4(x+8)$$
    $$x^2-4x-32=0$$
    $$x=-4;x=8$$
    area is
    $$\overset{8 }{\underset{-4}{\int}}\left [ \left ( \dfrac{x+8}{2} \right )-\frac{x^2}{8} \right ]dx$$
    $$\overset{8 }{\underset{-4}{\int}}(x/2+4-x^2/8)dx=\dfrac{x^2}{4}|_{-4}^{8}+4x|_{-4}^{8}-\dfrac{x^3}{24}|_{-4}^{8}$$
    $$12+48-24$$
    $$=36\: sq\: units$$

  • Question 5
    1 / -0
    The area bounded by $$y=3x$$ and $$y=x^{2}$$ is (in square units)
    Solution
    $$y=3x$$ and $$y=x^{2} in \:sq\: units$$
    $$3x=x^2$$
    $$x=3 \:and\: x=0$$ are the points of intersection
    $$\overset{3 }{\underset{0}{\int}}(3x-x^2)dx$$
    $$=\dfrac{3x^2}2|_{0}^{3}-\dfrac{x^3}{3}|_{0}^{3}$$

    $$=3\dfrac{9}{2}-\dfrac{27}{3}$$

    $$=\dfrac{27}{2}-9=\dfrac{9}{2}=4.5\: sq\: units$$

  • Question 6
    1 / -0
    The area bounded by the two curves $$y=\sin x,\ y=\cos x$$ and the $$\mathrm{X}$$-axis in the first quadrant $$\left[0,\displaystyle \frac{\pi}{2}\right]$$ is
    Solution
    The area bounded by the curves $$y=\sin x,\ y=\cos x$$ and $$\mathrm{X}$$-axis in  $$\left[0,\displaystyle \frac{\pi}{2}\right]$$ is given by 
    $$A=\overset{\pi /4}{\underset{0}{\displaystyle \int}}\sin x\:dx+\overset{\pi /2}{\underset{\pi /4}{\displaystyle \int}}\cos x\:dx$$

    $$=-[\cos x]_{0}^{\pi /4}+[\sin x]_{\pi /4}^{\pi /2}$$

    $$=-\left(\dfrac{1}{\sqrt{2}}-1\right)+\left(1-\dfrac{1}{\sqrt{2}}\right)$$

    $$=(2-\sqrt{2})sq\:units$$

  • Question 7
    1 / -0
    Area bounded by $$y=\sqrt{a^{2}-x^{2}},\ x+y=0$$ and $$\mathrm{y}$$-axis in sq. units is:
    Solution
    $$y=\sqrt{a^{2}-x^{2}},\ x+y=0$$
    its 1/8 of the segment of the circle So, the area is $$\frac{\pi a^2}{8}$$

  • Question 8
    1 / -0

    Area ofthe region bounded by $$y=|x|$$ and $$\mathrm{y}=2$$ is 
    Solution
    $$y=|x|$$ and $$\mathrm{y}=2$$
    area of $$\triangle^{le}$$ OAB
    $$=1/2\times(OC)\times(AB)$$
    $$=1/2(2)(4)$$
    $$=4 \:sq\:units$$

  • Question 9
    1 / -0
    The area of a region bounded by $$\mathrm{X}$$-axis and the curves defined by $$y=\tan x ,  0\displaystyle \leq x\leq\frac{\pi}{4}$$ and $$y=\displaystyle \cot x,\frac{\pi}{4}\leq x\leq\frac{\pi}{2}$$ is:
  • Question 10
    1 / -0

    The area bounded by $$y=\cos x,\ y=x+1$$ and $$y=0$$ in the second quadrant is
    Solution
    $$y=\cos x,\ y=x+1$$ and $$y=0$$
    Area of shaded region is required is (Area of curve OAB- area of $$\triangle^{le}$$ OCB)
    $$\overset{0}{\underset{-\pi /2}{\int}}\cos x\:dx-\overset{0}{\underset{-1}{\int}}(x+1)dx$$
    $$\sin x|_{-\pi /2}^{0}-\left ( \frac{x^2}{2}+x \right )|_{-1}^{0}$$
    $$1-1/2=1/2 sq\:units$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now