Self Studies

Application of Integrals Test - 17

Result Self Studies

Application of Integrals Test - 17
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The area bounded by the curve $$y^{2}=x$$ and the line $$\mathrm{x}=4$$ is:
    Solution
    Symmetric about x-axis
    So, area is
    $$2\overset{4}{\underset{0}{\int}}y\:dx$$
    $$2\overset{4}{\underset{0}{\int}}\sqrt{x}\:dx$$
    $$2\times\dfrac{2}{3}(2^3-0)=\dfrac{32}{3}sq\:units$$

  • Question 2
    1 / -0
    The area of the region between the curve $$y=4x^{2}$$ and the line $$y=6x-2$$ is:
    Solution
    The curve $$y=4{ x }^{ 2 }$$ and $$y=6x-2$$ intersect at $$\displaystyle x=\frac { 1 }{ 2 } ,y=1$$ and $$y=1,y=4$$
    Therefore area $$\displaystyle =\int _{ \frac { 1 }{ 2 }  }^{ 1 }{ \left( 6x-2-4{ x }^{ 2 } \right) dx } $$
    $$\displaystyle ={ \left[ \frac { 6{ x }^{ 2 } }{ 2 } -2x-\frac { 4{ x }^{ 3 } }{ 3 }  \right]  }_{ \frac { 1 }{ 2 }  }^{ 1 }=\frac { 1 }{ 12 } $$

  • Question 3
    1 / -0
    The area bounded by the parabola $$y^{2}=4x$$ and the line $$y=2x-4$$:
    Solution
    $$y^{2}=4x$$ and the line $$y=2x-4$$
    area in $$QI$$+area in QIV
    $$QI=$$     $$\overset{4}{\underset{0}{\int}}2\sqrt{x}\:dx- area of \triangle ^{le}$$
       $$=$$      $$\overset{4}{\underset{0}{\int}}2\sqrt{x}\:dx-1/2(2)(4)=\dfrac{32}{3}-4$$
    $$QIV=$$   $$|\overset{1}{\underset{0}{\int}}-\sqrt{x}\:dx|+1/2\times1\times1$$
    $$+\dfrac{4}{3}+1$$
     $$QI$$+QIV$$=  12-3=9\:sq\:units$$

  • Question 4
    1 / -0
    The area bounded by the line $$\mathrm{x}=1$$ and the curve $$\sqrt{\dfrac{y}{x}}+\sqrt{\dfrac{x}{y}}=4$$ is
    Solution
    Let $$\sqrt{\dfrac{y}{x}}=t$$.
    Then
    $$t+\dfrac{1}{t}=4$$
    $$t^{2}-4t+1=0$$
    $$t=\dfrac{4\pm\sqrt{12}}{2}$$

    $$=2\pm\sqrt{3}$$
    Hence
    $$\dfrac{y}{x}=(2\pm\sqrt{3})^{2}$$
    $$y=x(7-4\sqrt{3})$$ and $$y=x(7+4\sqrt{3})$$
    Hence the required area is the area of the triangle formed by the lines $$y=x(7-4\sqrt{3})$$ and $$y=x(7+4\sqrt{3})$$ and $$x=1$$.
    Hence we get the area
    =(Area of the right angled triangle formed by $$y=(7+4\sqrt{3})$$, x-axis and x=1 )-(Area of the right angled triangle formed by $$y=(7-4\sqrt{3})$$, x-axis and x=1 )

    $$=\dfrac{1}{2}[(7+4\sqrt{3})\times 1]-\dfrac{1}{2}[(7-4\sqrt{3})\times1)]$$

    $$=\dfrac{1}{2}[7+4\sqrt{3}-7+4\sqrt{3}]$$

    $$=4\sqrt{3}$$ units.
  • Question 5
    1 / -0
    Area of the region enclosed by $$y^{2}=8x$$ and $${y}=2{x}$$ is
    Solution

    Given curves are $$y^2=8x$$ and $$y=2x$$
    Let's find out their intersection point 

    $$\Rightarrow 4x^{2}=8x$$

    $$\Rightarrow x^{2}-2x=0$$

    $$\Rightarrow x(x-2)=0$$

    $$\Rightarrow x=0,2$$

    The required area is 
    $$A=\displaystyle \overset{2}{\underset{0}{\int}}(\sqrt{8x}-2x)dx$$
    $$=\displaystyle \overset{2}{\underset{0}{\int}}\sqrt{8x}\:dx-\overset{2}{\underset{0}{\int}}2x\:dx$$
    $$=\sqrt{8}\times\dfrac{2}{3}\times [x^{3/2}]_{0}^{2}-[x^2]_{0}^{2}$$
    $$=\dfrac{2\sqrt{8}}{3}\sqrt{8}-4$$
    $$=\dfrac{16}{3}-4=\dfrac{4}{3}\:sq\:units$$

  • Question 6
    1 / -0
    The area between the curves $$y=\sqrt{x}$$ and $$y=x^{3}$$ is
    Solution
    $$y=\sqrt{x}$$ and $$y=x^{3}$$
    The point of intersection of these curves will be
    $$\sqrt{x}=x^{3}\Rightarrow x=0,1$$
    Then, the area is given by
    $$A=\displaystyle \overset {1}{ \underset {  0}{ \int  }  } (\sqrt{x}-x^3)dx$$
    $$=\left[\dfrac{2}{3}x^{\frac{3}{2}}-\dfrac{x^{4}}{4}\right]_{0}^{1}$$

    $$=\dfrac{2}{3}(1)-\dfrac{1}{4}$$

    $$=\dfrac{8-3}{12}$$

    $$=\dfrac{5}{12}sq\:units.$$

  • Question 7
    1 / -0
    The area bounded by the parabola $$x^{2}=4ay,\ \mathrm{x}$$-axis and the straight line $$\mathrm{y}=2\mathrm{a}$$ is:
    Solution

    So, area of the shaded region
    $$-\overset{2\sqrt{2}a}{\underset{0}{\int}}x^2/4a\:dx+\overset{2\sqrt{2}a}{\underset{0}{\int}}(2a)\:dx$$
    $$2a(2\sqrt{2a})-\dfrac{}{4a}\dfrac{x^3}{3}|_{0}^{2\sqrt{2a}}$$
    $$=4\sqrt{2}a^2-\dfrac{(2^{3/2}a)^3}{4a\times 3}$$
    $$4\sqrt{2}a^2-\dfrac{2\times2\sqrt{2}a^2}{3}$$
    $$=\dfrac{16\sqrt{2}a^2}{3}sq\:units.$$

  • Question 8
    1 / -0
    The area bounded by $$\mathrm{y}=\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{x},\ \mathrm{y}=\mathrm{c}\mathrm{o}\mathrm{s}\mathrm{x}$$ between any two successive intersections is:
    Solution
    $$\sqrt{2}\overset {5\pi/4}{ \underset {  \pi/4}{ \int  }  } \sin (x-\pi /4)dx$$
    $$=-\sqrt{2}\cos (x-\pi /4)|_{\pi /4}^{5\pi /4}$$
    $$=-\sqrt{2}[\cos \pi-\cos 0]$$
    $$=2\sqrt{2}sq\:units.$$

  • Question 9
    1 / -0
    The area bounded by the curves $$y=\sin x,y=$$ cosx and the $$\mathrm{y}$$-axis and the first point of intersection is:
    Solution
    $$\overset {\pi/4}{ \underset {  0}{ \int  }  } (\cos x-\sin x)\:dx$$
    $$\overset {\pi/4}{ \underset {  0}{ \int  }  } \cos x\:dx-\overset {\pi/4}{ \underset {  0}{ \int  }  } \sin x\:dx$$
    $$\sin x|_{0}^{\pi /4}+\cos x|_{0}^{\pi /4}$$
    $$=1/\sqrt{2}+1/\sqrt{2}-1$$
    $$=\sqrt{2}-1 sq\:units.$$

  • Question 10
    1 / -0
    Assertion(A): The area bounded by $$y^{2}=4x$$ and $$x^{2}=4y$$ is $$\displaystyle \frac{16}{3}$$ sq. units.

    Reason(R): The area bounded by $$y^{2}=4ax$$ and $$x^{2}=4ay$$ is $$\displaystyle \frac{16a^2}{3}$$ sq. units
    Solution
    Given $$y^2=4ax$$ and $$x^2=4ay$$
    Since both curves intersect, 
    $$\therefore x=\dfrac{y^2}{4a}$$

    $$\Rightarrow (\dfrac{y^2}{4a})^2=4ay $$

    $$\Rightarrow y^4=64a^3y$$

    $$\Rightarrow y[y^3-(4a)^3]=0$$

    $$\Rightarrow y=0,4a.$$
    When $$y=0,x=0$$ and when $$ y=4a,x=4a,$$
    Area $$A=\int_{0}^{4a}\left(\sqrt(4ax)-\dfrac{x^2}{4a}\right)dx $$
    on solving we will get 
    $$A=\dfrac{16}{3a^2}$$

    Now if we put $$ a=1 $$,
    we will get $$A=\dfrac{16}{3}$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now