Self Studies

Application of Integrals Test - 33

Result Self Studies

Application of Integrals Test - 33
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Area common to the curve $$y^2 = 16x$$ and $$y = 2x$$, is : 
    Solution
    $$y^2=16x,y=2x$$

    $$\Rightarrow 4\sqrt{x}=2x$$

    $$\sqrt{x}=2\Rightarrow x=4$$

    Area$$=\int_{0}^{4}(\sqrt{16x}-2x)dx$$

    $$=\int_{0}^{4}(4\sqrt{x}-2x)dx$$

    $$=\left [ \dfrac{4x^{\frac{3}{2}}}{\frac{3}{2}}-x^2 \right ]_0^4$$

    $$=\dfrac{8}{3}[8-0]-[16-0]$$

    $$=\dfrac{64}{3}-16$$

    $$=\dfrac{16}{3}$$sq.units
  • Question 2
    1 / -0
    The area bounded by the curve $$y=sin(x-[x]),y=sin1,\,x=1$$ and the x-axis is
    Solution

  • Question 3
    1 / -0
    The area of the region bounded by $$\left| arg\left( z+1 \right)  \right| \le \frac { \pi  }{ 3 } $$ and $$ \left|z+1   \right| \le \frac { \pi  }{ 4 } $$ is given by
    Solution

  • Question 4
    1 / -0
    The curves $$y = x^{2} - 1, y = 8x - x^{2} - 9$$ at
    Solution
    $$y={ x }^{ 2 }-1=8x-{ x }^{ 2 }-9\\ 2{ x }^{ 2 }-8x+8=0\\ { x }^{ 2 }-4x+4=0\\ { (x-2) }^{ 2 }=0\\ x=2\\ y={ x }^{ 2 }-1={ (2) }^{ 2 }-1=3$$
    So, curves intersect at $$(2,3)$$
    Now, $${ m }_{ 1 }=\cfrac { dy }{ dx } $$ of $$({ x }^{ 2 }-1)$$ at $$(2,3)$$
    $${ m }_{ 1 }=2x=2(2)=4$$
    $${ m }_{ 2 }=\cfrac { dy }{ dx } $$ of $$(8x-{ x }^{ 2 }-9)$$ at $$(2,3)$$
    $${ m }_{ 2 }=8-2x=8-2(2)=4$$
    Since $${ m }_{ 1 }={ m }_{ 2 }$$
    we can say that curves touch each other at $$(2,3)$$.
  • Question 5
    1 / -0
    The area enclosed between the curves $$y={ ax }^{ 2 }$$ and $$x={ ay }^{ 2 }$$ $$(a>0)$$ is $$1\ sq.unit$$. then $$a=$$
    Solution

    $$\Rightarrow x = a(ax^2)^2$$
    $$\Rightarrow x = 0, \dfrac{1}{a} \Rightarrow y = 0, \dfrac{1}{a}$$
    $$\therefore$$ Point of intersection are $$(0,0)$$ and $$\left(\dfrac{1}{a} , \dfrac{1}{a} \right)$$.
    Thus, required area $$OABCO =$$ Area of curve $$OCBDO -$$ area of curve $$OABDO$$
    $$\Rightarrow \displaystyle \int_0^{1/a} \left(\sqrt{\dfrac{x}{a}} - ax^2 \right) dx = 1$$ (given)
    $$\Rightarrow \left[\dfrac{1}{\sqrt{a}} . \dfrac{x^{3/2}}{3/2} - \dfrac{ax^3}{3} \right]_0^{1/a} = 1$$
    $$\Rightarrow \dfrac{2}{3a^2} - \dfrac{1}{3a^2} = 1$$
    $$\Rightarrow a^2 = \dfrac{1}{3} \Rightarrow a = \dfrac{1}{\sqrt{3}} \, \, \, (\because a > 0)$$
    Hence, this is the answer.

  • Question 6
    1 / -0
    The area bounded by the curves $$y=f(x)$$, the x-axis and the ordinates $$x=1$$ and $$x=\beta $$ is $$(\beta -1)\sin(3\beta +4)$$. Then $$f(x)$$ is
    Solution

  • Question 7
    1 / -0
    Two vertices of a rectangle are on the positive x-axis. The other two vertices lie on the lines $$y=4x$$ and $$y=-5x+6$$. Then the maximum area of the rectangle is?
    Solution
    Let the two vertex lying  be $$(a,0)$$ and $$(b,0)$$ where $$a<b$$
    Since $$y=4x$$ is containing coordinate corresponding to $$(a,0)$$ ; we get 
    Point to be $$(a,4a)$$
    and the other with $$y=-5x+6$$ , we get point as $$(b,-5b+6)$$
    Now as $$b-a=-5b+6-4a$$  (Length)
    $$a+2d=2$$
    Area of Rectangle$$=$$ Length $$\times$$ breadth $$=(b-a)(4a)$$
    Area$$=(b-a)(4a)=(\cfrac { 2-a }{ 2 } -a)(4a)=(2-3a)(2a)$$
    Area $$=4a-6{ a }^{ 2 }$$
    For Maxima/Minima,
    $$\cfrac { d(Area) }{ da } =0\quad \Rightarrow 4-12a=0\\ a=\cfrac { 1 }{ 3 } $$
    Area$$=(4a-{ 6a }^{ 2 })=\cfrac { 4 }{ 3 } -\cfrac { 6 }{ 9 } =\cfrac { 2 }{ 3 } $$ sq. unit
  • Question 8
    1 / -0
    The area of the region bounded by the curve $${a^4}{y^2} = \left( {2a - x} \right){x^5}$$ is to that curve whose radius is $$a$$, is given by the ration.
    Solution
      $$ {{a}^{4}}{{y}^{2}}=\left( 2a-x \right){{x}^{5}} $$
     $$ cut\text{ off x-axis when y=0} $$
     $$ \left( 2a-x \right){{x}^{5}}=0 $$
     $$ A_{1}^{{}}=\int\limits_{0}^{2a}{\dfrac{\sqrt{\left( 2a-x \right)}{{x}^{5/2}}}{{{a}^{2}}}}dx $$
     $$ put\,x=\,2a{{\sin }^{2}}\theta  $$
     $$ dx=4a\sin \theta \cos \theta d\theta  $$
     $$ \therefore A_{1}^{{}}=\int\limits_{0}^{\pi /2}{\dfrac{\sqrt{2a}\cos \theta {{\left( 2a \right)}^{5/2}}{{\sin }^{5}}\theta \times 4a\sin \theta \cos \theta }{{{a}^{2}}}}d\theta  $$
     $$ \,\,\,\,\,\,\,\,\,=32{{a}^{2}}\int\limits_{0}^{\pi /2}{{{\sin }^{6}}\theta {{\cos }^{2}}\theta d\theta } $$
     $$ \,\,\,\,\,\,\,=32{{a}^{2}}\dfrac{\left( 5.3.1 \right)\left( 1 \right)}{8.6.4.2}\dfrac{\pi }{2}\,\,\,\,\left[ by\,Walli'sformula \right] $$
     $$ \,\,\,\,\,\,=\dfrac{5\pi {{a}^{2}}}{8} $$
     $$ Area\,of\,circle\,A_{2}^{{}}=\pi {{a}^{2}} $$
     $$ \dfrac{A_{1}^{{}}}{A_{2}^{{}}}=\dfrac{5}{8} $$
     $$ A_{1}^{{}}:A_{2}^{{}}=5:8 $$
  • Question 9
    1 / -0
    The area enclosed between the curves $$y=a{ x }^{ 2 }$$ and $$x=a{ y }^{ 2 }$$ $$\\ (a>0)$$ is $$1sq.unit$$. then $$a=$$
    Solution
    $$y=a(ay^2)^2\\y=a^3y^4\\y(y^3a^3-1)=0$$
    $$y=0,1/a$$
    $$x=ay^2\\x=a/a^2$$
    $$x=1/a$$
    $$\\ A=[\int _{ 0 }^{ 1/a }{ \sqrt { \cfrac { x }{ a }  } -a{ x }^{ 2 } } dx\\ A={ [\cfrac { 2{ x }^{ 3/2 } }{ 3\sqrt { a }  } -\cfrac { a{ x }^{ 3 } }{ 3 } ] }_{ 0 }^{ 1/a }\\ A=\cfrac { 2{ (1/a) }^{ 3/2 } }{ 3\sqrt { a }  } -\cfrac { a{ (1/a) }^{ 3 } }{ 3 } \\ A=\cfrac { 2 }{ 3{ a }^{ 2 } } -\cfrac { 1 }{ 3{ a }^{ 2 } } \\ A=\cfrac { 1 }{ 3{ a }^{ 2 } } $$
    given $$A=1\\\cfrac{1}{3a^2}=1\\3a^2=1\\a^2=1/3\\a=\sqrt{1/3}$$
  • Question 10
    1 / -0
    If area bounded by $$f(x)=x^{\frac{1}{3}}(x-1)$$ $$x-$$axis is A then find the value of $$28A$$.
    Solution
    We have,
    $$f(x)=y=x^{1/3}(x-1)$$

    Since, $$x-axis$$ means $$y=0$$

    Therefore,
    $$f(x)=y=x^{1/3}(x-1)=0$$
    $$x=0,1$$

    Area bounded by this function is $$A$$.
    $$A=\left|\displaystyle \int_{0}^{1}x^{1/3}(x-1)dx\right|$$

    $$A=\left|\displaystyle \int_{0}^{1}(x^{4/3}-x^{1/3})dx\right|$$

    $$A=\left|\displaystyle \left(\dfrac{x^{7/3}}{7/3}-\dfrac{x^{4/3}}{4/3}\right)_{0}^{1}\right|$$

    $$A=\left|\displaystyle \left(\dfrac{3}{7}(1)-\dfrac{3}{4}(1)\right)\right|$$

    $$A=\left|\displaystyle \left(\dfrac{12-21}{28}\right)\right|$$

    $$A=\left|\displaystyle \left(\dfrac{-9}{28}\right)\right|$$

    $$A=\dfrac{9}{28}$$

    Therefore,
    $$28A=28\times \dfrac{9}{28}=9$$

    Hence, this is the answer.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now