Point of intersection of the parabola and the circle is obtained by solving the equations:
$${x}^{2}+{y}^{2}=16$$ and $${y}^{2}=6x$$
$$\Rightarrow\,{x}^{2}+6x-16=0$$
$$\Rightarrow\,{x}^{2}+8x-2x-16=0$$
$$\Rightarrow\,x\left(x+8\right)-2\left(x+8\right)=0$$
$$\Rightarrow\,\left(x-2\right)\left(x+8\right)=0$$
$$\Rightarrow\,x=2,\,x=-8$$
$$\therefore\,x=2$$ is the only possible solution(from the fig.)
$$\therefore\,$$ when $$x=2,\,y=\pm\sqrt{6\times 2}=\pm\,2\sqrt{3}$$
$$\therefore\,B\left(2,2\sqrt{3}\right)$$ and $${B}^{\prime}\left(2,-2\sqrt{3}\right)$$ are the points of intersection of parabola and the circle.
Required area$$=area\,of\,OBA{B}^{\prime}O=2\,area\,of \,OBAO$$
$$=2\left[area\,of\,OBDO+area\,of\,DBAD\right]$$
$$=2\left[\displaystyle\int_{0}^{2}{\sqrt{6x}dx}+\displaystyle\int_{2}^{4}{\sqrt{16-{x}^{2}}dx}\right]$$
$$=2\left[\sqrt{6}\left[\dfrac{{x}^{\frac{3}{2}}}{\dfrac{3}{2}}\right]_{0}^{2}+\left[\dfrac{1}{2}x\sqrt{16-{x}^{2}}+\dfrac{1}{2}\times 16{\sin}^{-1}{\dfrac{x}{4}}\right]_{2}^{4}\right]$$
$$=2\left[\left[\sqrt{6}\times\dfrac{2}{3}\times{2}^{\frac{3}{2}}-0\right]+\left[\dfrac{1}{2}\times\,4\sqrt{16-16}+\dfrac{1}{2}\times\,16{\sin}^{-1}{\dfrac{4}{4}}-\dfrac{1}{2}\times\,2\sqrt{16-4}-\dfrac{1}{2}\times\,16{\sin}^{-1}{\dfrac{1}{2}}\right]\right]$$
$$=2\left[\dfrac{8\sqrt{3}}{3}+\dfrac{8\pi}{2}-2\sqrt{3}-\dfrac{8\pi}{6}\right]$$
$$=2\left[\dfrac{8\sqrt{3}-6\sqrt{3}}{3}+8\left(\dfrac{\pi}{2}-\dfrac{\pi}{6}\right)\right]$$
$$=2\left[\dfrac{2\sqrt{3}}{3}+8\times\dfrac{2\pi}{6}\right]$$
$$=\dfrac{4\sqrt{3}}{3}+\dfrac{16\pi}{3}$$