Self Studies

Application of Integrals Test - 64

Result Self Studies

Application of Integrals Test - 64
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Area bounded between the curves $$y=\sqrt{4-x^2}$$ and $$y^2=3|x|$$ is/are?
    Solution

  • Question 2
    1 / -0
    Let $$A_{n}$$be the area bounded by the curve $$y=(\tan x)^{n}$$ and the lines $$x=0,y=0$$ and $$4x-\pi=0$$, where 
    Solution

  • Question 3
    1 / -0
    The area of a region bounded by $$X$$ -axis and the curves defined by $$y = \tan x$$ $$0 \leq x \leq \frac { \pi } { 4 }$$ and $$y = \cot x , \frac { \pi } { 4 } \leq x \leq \frac { \pi } { 2 }$$ is 
    Solution

  • Question 4
    1 / -0
    The area bounded by the curve $$ y = \dfrac { \sin { x }  }{ { x } } , x-$$ axis and the ordinates $$ x=0,x=\dfrac { \pi }{ { 4 } }$$ is:
  • Question 5
    1 / -0
    The parabolas $$y^2=4x, x^2=4y$$ divide the square region bounded by the lines $$x=4$$, $$y=4$$ and the coordinate axes. If $$S_1, S_2, S_3$$ are respectively the area of these parts numbered from top to bottom then $$S_1 : S_2 : S_3$$ is?
    Solution

  • Question 6
    1 / -0
    Area of the figure bounded by $$x$$ -axis, $$y = \sin ^ { - 1 } x , y = \cos ^ { - 1 } x$$ and the first point intersection from the origin is
    Solution

  • Question 7
    1 / -0
    The area (in sq.units) of the region $$\left\{ ( x , y ) :{ y} ^ { 2 } \ge 2 x\right.$$ and $${x} ^ { 2 } +{ y} ^ { 2 } \le 4 x , x \ge 0 , y \ge 0$$ is 
    Solution
    Consider $$y^2=2x$$ and $$x^2+y^2=4x$$, on solving,

    we get $$x^2+2x=4x$$

    $$x^2=2x\Rightarrow x=0, 2$$

    The integral lies between $$0$$ and $$2$$

    $$y^2=2x$$                $$y^2+x^2=4x$$

    $$\Rightarrow y=\sqrt{2x}$$            $$\Rightarrow y=\sqrt{4x-x^2}$$

    Area $$=\displaystyle\int^2_0\sqrt{4x-x^2}-\sqrt{2x}dx$$

    $$=\displaystyle\int^2_0\sqrt{2^2-(2-x)^2}-\displaystyle\int^2_0\sqrt{2x}dx$$

    $$=\left[\dfrac{x-2}{2}\sqrt{4x-x^2}-\dfrac{4}{2}\sin^{-1}\left(\dfrac{x-2}{2}\right)\right]^2_0-\left[\dfrac{\sqrt{2}}{3/2}x^{3/2}\right]^2_0$$

    $$=\left|2\sin^{-1}(-1)\right|-\dfrac{2\sqrt{2}}{3}\cdot 2\sqrt{2}$$

    $$=\pi -\dfrac{8}{3}$$.

  • Question 8
    1 / -0
    Area bounded by $$y=-x^{2}+6x-5,y=-x^{2}+4x-3$$ and $$y=3x-15$$ for $$x > 1$$, is (in $$sq.\ units$$)
    Solution

  • Question 9
    1 / -0
    Find the area of shaded portion 

    Solution
    Area of rectangle $$=18\times 10$$
                                  $$=180sq\;cm$$
    $$\Rightarrow$$ Triangle area $$DEF=\dfrac{1}{2}\times 10\times 6$$
                                            $$=30\;sq\;cm$$
    $$\Rightarrow$$ Triangle area $$BCE=\dfrac{1}{2}\times 10\times 8$$
                                            $$=40\;sq\;cm$$
    $$\Rightarrow$$ Area shaded region $$=180-30-40$$
                                             $$=110\;sq\;cm$$
    Hence, the answer is $$110\;sq\;cm.$$

  • Question 10
    1 / -0
    The area bounded by the curves $$\sqrt{x}+\sqrt{y}=1$$ and $${x}+{y}=1$$ is ?
    Solution
    $$\textbf{Step -1: Finding the point of intersection.}$$
                     $$\text{Find the points of intersection of the curves}$$
                     $$\implies \sqrt x=1-\sqrt y$$
                     $$\implies x=(1-\sqrt y)^2=1+y-2\sqrt y$$
                     $$\implies 1+y-2\sqrt y +y=1$$
                     $$\implies 2y=2\sqrt y$$
                     $$\implies y=0,1$$
                     $$\implies \text{Point of intersections are }(1,0)\text{ and }(0,1)$$
    $$\textbf{Step -2: Calculating the area .}$$
                      $$\sqrt y=1-\sqrt x$$ 
                      $$\implies y=1+x-2\sqrt x$$
                      $$\implies f_1(x)=x-2\sqrt x+1$$
                      $$\implies f_2(x)=1-x$$
                      $$\implies \text{Area}=\int_0^1(f_1(x)-f_2(x))dx$$
                      $$\implies \int_0^1(2x-2\sqrt x)dx$$
                      $$\implies x^2-2\dfrac{x^{\frac32}}{\frac32}|_0^1$$
                      $$\implies |1-\dfrac43|=|-\dfrac13|=\dfrac13$$
    $$\textbf{Hence, The required area is }\mathbf{\dfrac13}\textbf{ and correct answer is option A .}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now