Self Studies

Differential Equations Test - 26

Result Self Studies

Differential Equations Test - 26
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Find the solution of  $$\displaystyle \frac{dy}{dx}=\frac{xy+y}{xy+x}$$
    Solution
    $$\displaystyle \frac{dy}{dx}=\frac{xy+y}{xy+x}$$
    or $$\displaystyle \frac{y+1}{y}dy=\frac{x+1}{x}dx,$$
    or $$\displaystyle \left ( 1+\frac{1}{y} \right )dy=\left ( 1+\frac{1}{x} \right )dx$$
    or $$\displaystyle \int \left ( 1+\frac{1}{y} \right )dy=\int\left ( 1+\frac{1}{x} \right )dx$$
    $$\displaystyle y+\log y=x+\log x+\log k$$
    $$\displaystyle \therefore y-x=\log \frac{kx}{y}$$
  • Question 2
    1 / -0
    $$\displaystyle x\cos ^{2}ydx=y\cos ^{2}x dy$$
    Solution
    Given  $$\displaystyle x\cos ^{2}ydx=y\cos ^{2}x dy$$
    $$\displaystyle x\sec 2 x dx=y \sec ^{2}y dy.$$
    $$\displaystyle \int x\sec 2 x dx=\int y \sec ^{2}y dy.$$
    Integrate by parts, we get
    $$\displaystyle x\tan x-\int \tan x dx= y\tan y-\int \tan y dy+c$$
    $$\Rightarrow \displaystyle x\tan x-\log \sec x= y\tan y-\log \sec y+c.$$
  • Question 3
    1 / -0
    Solve the diffrential equation:  $$\displaystyle \log \frac{dy}{dx}=ax+by$$
    Solution
    $$\displaystyle \log \frac{dy}{dx}=ax+by$$
    $$\displaystyle \frac{dy}{dx}=e^{ax+by}=e^{ax}.e^{by}$$
    or $$\displaystyle e^{-by}dy=e^{ax}dx$$
    integrating we get,
    $$\displaystyle  -\frac{1}{b}e^{-by}=\frac{1}{a}e^{ax}+c$$
  • Question 4
    1 / -0
    Find the solution of  $$\displaystyle xy\frac{dy}{dx}=\frac{1+y^{2}}{1+x^{2}}\left ( 1+x+x^{2} \right )$$.
    Solution
    Given,  $$\displaystyle xy\frac{dy}{dx}=\frac{1+y^{2}}{1+x^{2}}\left ( 1+x+x^{2} \right )$$

    or $$\displaystyle \int \frac{y\:dy}{1+y^{2}}=\int \frac{1}{x}.\frac{1+x^{2}+x}{1+x^{2}}=\int \frac{1}{x}\left ( 1+\frac{x}{1+x^{2}} \right )dx=\int \dfrac 1 x +\dfrac {1}{1+x^2} \ dx$$

    $$\displaystyle  \int \frac{y\:dy}{1+y^{2}} =\int \dfrac 1 x +\dfrac {1}{1+x^2} \ dx$$

    $$\Rightarrow \displaystyle \frac{1}{2}\log \left ( 1+y^{2} \right )=\log x+\tan ^{-1}x+c$$
  • Question 5
    1 / -0
    Find the solution of  $$\displaystyle a\left ( x\frac{dy}{dx}+2y \right )=xy\frac{dy}{dx}$$.
    Solution
     Given  $$\displaystyle a\left ( x\frac{dy}{dx}+2y \right )=xy\frac{dy}{dx}$$
    or  $$\displaystyle \frac{\left ( a-y \right )}{y}dy=\frac{2a}{x}dx$$
    or  $$\displaystyle \frac{a}{y}dy+\frac{2a}{x}dx=dy$$
    Integrating,we get
    $$\displaystyle \int\frac{a}{y}dy+\int\frac{2a}{x}dx=\int dy$$
     $$a \displaystyle \log y+2a \log x=y+c$$
    or  $$\displaystyle \log yx^{2}=\frac{y+c}{a};$$
    $$\displaystyle \therefore yx^{2}=e^{\left ( y+c \right )/a}=ke^{y/a}$$
  • Question 6
    1 / -0
    Find the solution of  $$\displaystyle \left ( x^{2}-yx^{2} \right )\frac{dy}{dx}+\left ( y^{2}+xy^{2} \right )=0$$
    Solution
    $$\displaystyle x^{2}\left ( 1-y \right )\frac{dy}{dx}+y^{2}\left ( 1+x \right )=0$$
    or $$\displaystyle \frac{1-y}{y^{2}}dy+\frac{1+x}{x^{2}}dx=0.$$
    or $$\displaystyle \left ( \frac{1}{y^{2}}-\frac{1}{y} \right )dy+\left ( \frac{1}{x^{2}}+\frac{1}{x} \right )dx=0.$$
    Integrating, we get 
    $$\displaystyle \log x-\log y-\left ( \frac{1}{x}+\frac{1}{y} \right )=c=\log k$$ (say)
    or $$\displaystyle \log \frac{x}{ky}=\frac{x+y}{xy}$$
  • Question 7
    1 / -0
    $$y=ae^{-1/x}+b$$ is a solution of $$\displaystyle\frac{dy}{dx}=\frac{y}{x^{2}}$$ when

    Solution
    $$\displaystyle\frac{dy}{dx}=\frac{y}{x^{2}}$$
    $$\Rightarrow \dfrac{dy}{y}=\dfrac{dx}{x^2}=x^{-2}dx$$
    Integrating both sides, we get
    $$\ln y = -x^{-1}+c=-\dfrac{1}{x}+c$$
    $$\Rightarrow y  = e^{-1/x+c}=e^ce^{-1/x}=ae^{-1/x}$$
    Where $$e^c = a=$$ any constant.
    Comparing it with given solution we get, $$b=0, a\in R$$
  • Question 8
    1 / -0
    Solution of the given differential equation $$\displaystyle \left ( 1-x^{2} \right )\frac{dy}{dx}+xy=xy^{2}$$ is
  • Question 9
    1 / -0
    The order of the differential equation whose general solution is given by $$y =(C_1+ C_2 )\, cos\, (x+ C_3 )\, -\, C_4e^{x+c_5}$$ where $$C_1, C_2, C_3, C_4, C_5$$ are arbitrary constants, is:
    Solution
    We can write $$y=A+\cos { \left( x+B \right)  } -C{ e }^{ x }$$
    where $$A={ C }_{ 1 }+{ C }_{ 2 },B={ C }_{ 3 }$$ and $$C={ C }_{ 4 }{ e }^{ { C }_{ 5 } }$$
    $$\cfrac { dy }{ dx } =-A\sin { \left( x+B \right)  } -C{ e }^{ x }\\ \cfrac { { d }^{ 2 }y }{ { dx }^{ 2 } } =-A\cos { \left( x+B \right)  } -C{ e }^{ x }\\ \Rightarrow \cfrac { { d }^{ 2 }y }{ { dx }^{ 2 } } +y=-2C{ e }^{ x }\\ \Rightarrow \cfrac { { d }^{ 3 }y }{ { dx }^{ 3 } } +\cfrac { dy }{ dx } =-2C{ e }^{ x }=\cfrac { { d }^{ 2 }y }{ { dx }^{ 2 } } +y\\ \Rightarrow \cfrac { { d }^{ 3 }y }{ { dx }^{ 3 } } -\cfrac { { d }^{ 2 }y }{ { dx }^{ 2 } } +\cfrac { dy }{ dx } -y=0$$
    which is differential equation of order 3
  • Question 10
    1 / -0
    Find the solution of  $$\displaystyle\frac{dy}{dx}+\sin\left ( \frac{x+y}{2} \right ) =\sin \left ( \frac{x-y}{2} \right )$$.
    Solution
    $$\displaystyle\frac{dy}{dx}+\sin\left ( \frac{x+y}{2} \right ) =\sin \left ( \frac{x-y}{2} \right )$$
    or  $$\displaystyle\frac{dy}{dx} =\sin \left ( \frac{x-y}{2} \right )-\sin\left ( \frac{x+y}{2} \right )$$
    or  $$\displaystyle \frac{dy}{dx}=-2\cos \frac{x}{2}\sin \frac{y}{2}$$
    or $$\displaystyle \int cosec\frac{y}{2}dy=\int -2\cos \frac{x}{2}dx$$
    or $$\displaystyle \log \tan \frac{y}{4}=c-2\sin \frac{x}{2}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now