Self Studies

Differential Equations Test - 41

Result Self Studies

Differential Equations Test - 41
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Solution of the differential equation: $$\left( 2xcosy+{ y }^{ 2 }cosx \right) dx+\left( 2ysinx-{ x }^{ 2 }siny \right) dy=0$$ is :
    Solution

  • Question 2
    1 / -0
    Solution of the equation $$\dfrac{{dy}}{{dx}} = 1 + xy + x + y$$ is
    Solution
    $$\dfrac { dy }{ dx } =1+xy+x+y$$
           $$=1+y(x+1)+x$$
    $$\dfrac { dy }{ dx } =\left( 1+y \right) \left( 1+x \right) $$
    $$\Rightarrow \dfrac { dy }{ \left( 1+y \right)  } =\left( 1+x \right) dx$$
    $$\Rightarrow log\left| 1+y \right| =x+\dfrac { { x }^{ 2 } }{ 2 } +c$$      [C]
  • Question 3
    1 / -0
    The general solution of the differential equation $$\dfrac { dy }{ dx } +y={ x }^{ 3 }$$ is ______.
    Solution

  • Question 4
    1 / -0
    Solution of differential equation $$ \cfrac {dy} {dx} + x{sin}^{2} y $$= $$sin y  \quad cos y  \quad $$is
  • Question 5
    1 / -0
    If $$\dfrac{dy}{dx}=y+3>0$$ and $$y(0)=2$$ then $$y(\ln{2})$$ is equal to :
    Solution
    $$ \frac{dy}{dx} = y + 3 $$ and y(0) = 2
    then y (ln 2) = (?)
    $$ \therefore \frac{dy}{dx} = y+3$$
    $$ \therefore \frac{1}{y+3} dy = dx$$
    Integrating both side
    $$ \int \frac{1}{y+3}dy =\int dx$$
    $$ \therefore $$ ln(y + 3) = x + c
    $$ \rightarrow $$ Initial condition y(0)=2
    $$ \therefore ln(2+3)=0+c$$
    $$ \therefore c=ln 5$$
    $$ \rightarrow $$ ln(y + 3) = x + ln5
    $$ \therefore $$ ln(y + 3) - ln5 = x
    $$ \therefore ln\left ( \frac{y+3}{5} \right )=x$$
    $$ \therefore \frac{y+3}{5} = e^{x}$$
    $$ \therefore y=5e^{x} - 3$$
    for y (ln2)
    $$ y = 5e^{ln2}-3$$
    $$ = 5 \times 2 - 3 $$
    = 10 - 3
    = 7 

  • Question 6
    1 / -0
    The general solution of the differential equation $$e^xdy+(ye^x+2x)dx=0$$ is
    Solution
    $$e^x dy +(ye^x+2x)dx=0$$
    $$e^x dy=-(ye^x+2x)dx$$
    $$\dfrac{dy}{dx}=\dfrac{-(ye^x+2x)}{e^x}$$

    $$\dfrac{dy}{dx}=-\dfrac{ye^x}{e^x}-\dfrac{2x}{e^x}$$

    $$\dfrac{dy}{dx}=-y-\dfrac{2x}{e^x}$$

    $$\dfrac{dy}{dx}+y=\dfrac{-2x}{e^x}$$

    This is of the form $$\dfrac{dy}{dx}+Py=Q$$

    where $$P=1$$ and $$Q=-\dfrac{2x}{e^x}$$

    $$I.F=e^{\int Pdx}$$
    $$=e^{\int 1 dx}=e^x$$

    Solution is :
    $$ye^x=\int \dfrac{-2x}{e^x} e^x \ dx+C$$

    $$ye^x=-\int 2x \ dx +C$$
    $$ye^x=-x^2+C$$
    $$ye^x+x^2=C$$
  • Question 7
    1 / -0
    The solution of differential equation $$\cos x.\sin y dx+\sin x. \cos ydy=0$$ is 
    Solution
    Given,
    $$\left( \cos { x } .\sin { y }  \right) dx+\left( \sin { x } .\cos { y }  \right) dy=0$$
    $$\Rightarrow \left( \cos { x } .\sin { y }  \right) dx=-\sin x.\cos y dy$$
    $$\Rightarrow \dfrac{\cos x}{\sin x}dx=\dfrac{-\cos x}{\sin y}dy$$
    ( All we have done is separated the variables )
    $$\Rightarrow \cot x\;dx=-\cot y\;dy$$
    ( Now integrating both the sides we get )
    $$\Rightarrow \int \cot x\;dx =-\int \cot y\;dy$$
    $$\Rightarrow \int \cot y\;dy =-\int \cot x\;dx$$
          $$ln\;\sin y=-ln \sin x +ln C$$      ( $$ln$$ C is interpretation  const. )
          $$ln\sin y =ln \dfrac{1}{\sin x}+ln C$$
          $$ln \sin y=ln \dfrac{C}{\sin x}$$     $$\left( \because ln\;a+ln\;b=ln \;ab\right)$$
          $$\sin y=\dfrac{C}{\sin x}$$
    $$\Rightarrow \sin x.\sin y=C$$
    Hence, the answer is $$\sin x.\sin y=C.$$


    '
  • Question 8
    1 / -0
    For the given differential equation find the general solution:
    $$\dfrac { dy }{ dx } +2y=sin x$$
    Solution

  • Question 9
    1 / -0
    The differential equation of the system of circles touching the $$x$$-axis at origin is  
    Solution

  • Question 10
    1 / -0
    Let y=y(x) be the solution of the differential equation $$sinx\dfrac { dy }{ dx } +ycosx=4x,x\in (0,\pi )$$. If $$y=\left( \dfrac { \pi  }{ 2 }  \right) =0,then\quad y\left( \dfrac { \pi  }{ 6 }  \right) $$ is equal to :
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now