Self Studies

Vector Algebra Test - 77

Result Self Studies

Vector Algebra Test - 77
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    If \(2\left[\begin{array}{ll}1 & 3 \\ 0 & x \end{array}\right]+\left[\begin{array}{ll} y & 0 \\ 1 & 2\end{array}\right]=\left[\begin{array}{ll}5 & 6 \\ 1 & 8\end{array}\right]\) then find the value of \(x+y\).

    Solution
    Given,
    \(\begin{aligned} 2\left[\begin{array}{cc}
    1 & 3 \\
    0 & x
    \end{array}\right]+\left[\begin{array}{ll}
    y & 0 \\
    1 & 2
    \end{array}\right]=\left[\begin{array}{ll}
    5 & 6 \\
    1 & 8 \end{array}\right]\end{aligned}\)
    \(\begin{aligned}\Rightarrow\left[\begin{array}{cc}
    2 & 6 \\
    0 & 2 x
    \end{array}\right]+\left[\begin{array}{ll}
    y & 0 \\
    1 & 2
    \end{array}\right]=\left[\begin{array}{ll}
    5 & 6 \\
    1 & 8
    \end{array}\right]\end{aligned}\)
    \(\begin{aligned}\Rightarrow\left[\begin{array}{cc}
    2+y & 6 \\
    1 & 2 x+2
    \end{array}\right]=\left[\begin{array}{ll}
    5 & 6 \\
    1 & 8
    \end{array}\right]
    \end{aligned}
    \)
    As we know, If two matrices \(A\) and \(B\) are said to be equal, then
    Order of matrix \(A=\) Order of matrix \(B\)
    Corresponding element of matrix \(A=\) Corresponding element of \(B\)
    So, equating the corresponding elements:
    \(\therefore 2+y=5 \)
    \(\Rightarrow y=5-2\)\(\Rightarrow y=3\)
    And \(2 x+2=8\)
    \(\Rightarrow 2x=8-2\)
    \(\Rightarrow 2x=6\)\(\Rightarrow x=3\)
    Now, \(x+y=3+3=6\)
    So, the value of \(x+y\) is \(6\).
  • Question 2
    1 / -0

    If \(\left[\begin{array}{cc}2 x+y & 4 x \\ 5 x-7 & 4 x\end{array}\right]=\left[\begin{array}{cc}7 & 7 y-13 \\ y & x+6\end{array}\right]\), then \(x+y=?\)

    Solution

    As we know,

    When two matrices are equal, all the corresponding elements must be equal.

    Given,

    \(\left[\begin{array}{cc}2 x+y & 4 x \\ 5 x-7 & 4 x\end{array}\right]=\left[\begin{array}{cc}7 & 7 y-13 \\ y & x+6\end{array}\right]\)

    Comparing two elements of first column,

    \(2 x+y=7 \)

    \(\Rightarrow y= 7-2x\)...(1)

    \(5 x-7=y \)...(2)

    Compairing value of \(y\) from equation (1) and (2) we get,

    \(7-2 x=5 x-7\)

    \(\Rightarrow 7+7=5x+2x \)

    \(\Rightarrow 14=7x \)

    \(\therefore x=2\)

    Putting value of \(x\) in equation (1), we get

    \(y=7-2\times 2\)

    \(\Rightarrow y=7-4\)

    \(\Rightarrow y=3\)

    Now, 

    \(x+y=2+3=5\)

    So, the value of \(x+y\) is \(5\).

  • Question 3
    1 / -0

    If \(A =\left[\begin{array}{ll}1 & 2 \\ 1 & 1\end{array}\right]\) and \(B =\left[\begin{array}{cc}0 & -1 \\ 1 & 2\end{array}\right]\), then \(B ^{-1} A ^{-1}\) is equal to:

    Solution
    As we know,
    The inverse of matrix \(A\) is given by, \(A ^{-1}=\frac{1}{| A |} .\) adj. A
    \(\begin{aligned}
    A=\left(\begin{array}{ll}
    a & b \\
    c & d
    \end{array}\right) \end{aligned}\)
    \(\begin{aligned} \operatorname{adj} A=\left(\begin{array}{cc}
    d & -b \\
    -c & a
    \end{array}\right)
    \end{aligned}
    \)
    Interchange the diagonal elements and change the sign of the remaining elements.
    Given,
    Matrix \(A =\left[\begin{array}{ll}1 & 2 \\ 1 & 1\end{array}\right]\)
    The inverse of matrix \(A\) is given by,
    We know that,
    Adj. of Matrix \(|X|=\left[\begin{array}{ll}
    A_1 & A_2\\
    B_1 & B_2
    \end{array}\right]\)
    \(|X|=\left(A_1\times B_2-A_2\times B_1\right)\)
    \(A ^{-1}=\frac{1}{| A |} \cdot\) adj. \(A\)
    \(\begin{aligned}
    &\Rightarrow| A |=-1 \cdot \text { adj. } A =\left[\begin{array}{cc}
    1 & -2 \\
    -1 & 1
    \end{array}\right] \\
    &\Rightarrow A ^{-1}=\left[\begin{array}{cc}
    -1 & 2 \\
    1 & -1
    \end{array}\right] \end{aligned}\)
    Now,
    \(\begin{aligned} &B =\left[\begin{array}{cc}
    0 & -1 \\
    1 & 2
    \end{array}\right] \\
    &| B |=1 \cdot \text { Adj. } B =\left[\begin{array}{cc}
    2 & 1 \\
    -1 & 0
    \end{array}\right] \\
    &\Rightarrow B ^{-1}=\left[\begin{array}{cc}
    2 & 1 \\
    -1 & 0
    \end{array}\right]
    \end{aligned}\)
    Now,
    \(B ^{-1} A ^{-1}=\left[\begin{array}{cc}2 & 1 \\ -1 & 0\end{array}\right] \cdot\left[\begin{array}{cc}-1 & 2 \\ 1 & -1\end{array}\right]\)
    \(=\left[\begin{array}{cc}-1 & 3 \\ 1 & -2\end{array}\right]\)
  • Question 4
    1 / -0

    If \(A=\left[\begin{array}{cc}4 & -3 \\ 1 & 0\end{array}\right]\) then \(A+A^{T}\) is equal to:

    Solution

    Given,

    \(A=\left[\begin{array}{cc} 4 & -3 \\ 1 & 0 \end{array}\right]\)

    The transpose of a matrix \(A\) is given by \(A^T\),

    In transpose of matrix, rows are converted into columns and vice-versa.

    \(A^{T}=\left[\begin{array}{cc} 4 & 1 \\ -3 & 0 \end{array}\right]\)

    Now,

    \(\begin{aligned} &A+A^{T}=\left[\begin{array}{cc} 4 & -3 \\ 1 & 0 \end{array}\right] + \left[\begin{array}{cc} 4 & 1 \\ -3 & 0 \end{array}\right] \\ &=\left[\begin{array}{cc} 4+4 & -3+1 \\ 1+(-3) & 0+0 \end{array}\right] \\ &=\left[\begin{array}{cc} 8 & -2 \\ -2 & 0  \end{array}\right] \end{aligned}\)

  • Question 5
    1 / -0

    Construct a \(3 \times 2\) matrix whose elements are given by \(a _{ ij }=\frac{1}{3}|2 i + j |\).

    Solution
    As we know,
    In general, a \(3 \times 2\) matrix is given by,
    \(A=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32}\end{array}\right]\)
    Given,
    \(a _{ ij }=\frac{1}{3}|2 i + j |\)
    Here \( i =1,2,3\) and \( j =1,2 \)
    \(\begin{aligned}& a _{11}=\frac{1}{3}|2+1|=1, a _{12}=\frac{1}{3}|2+2|=\frac{4}{3} \\
    & a _{21}=\frac{1}{3}|4+1|=\frac{5}{3}, a _{22}=\frac{1}{3}|4+2|=\frac{6}{3}=2 \\
    & a _{31}=\frac{1}{3}|6+1|=\frac{7}{3}, a _{32}=\frac{1}{3}|6+2|=\frac{8}{3}
    \end{aligned}
    \)
    So, the required matrix is \(\left[\begin{array}{cc}1 & \frac{4}{3} \\ \frac{5}{3} & 2 \\ \frac{7}{3} & \frac{8}{3}\end{array}\right]\).
     
  • Question 6
    1 / -0

    If \(A=\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right)\), then \(A^{-1}=\) ?

    Solution

    \(A ^{-1}=\frac{a d j A}{|A|}\)

    We are given \(A=\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right)\)

    On finding its determinant, we get,

    \(| A |=0(0-0)-0(0-0)+1(0-1)=-1\)

    \(\Rightarrow| A |=-1\).

    Now,

    Finding the cofactors of A, we get,

    \(A _{11}=\left|\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right|=0, A _{12}=\left|\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right|=0, \quad A _{13}=\left|\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right|=-1\)

    \(A_{21}=\left|\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right|=0, \quad A_{22}=\left|\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right|=-1, A_{23}=\left|\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right|=0\)

    \(A _{31}=\left|\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right|=-1, \quad A _{32}=\left|\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right|=0, \quad A _{33}=\left|\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right|=0\)

    i.e. \(\operatorname{adj}( A )=\left(\begin{array}{lll}A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33}\end{array}\right)\)

    \(\Rightarrow \operatorname{adj}(A)=\left(\begin{array}{ccc}0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0\end{array}\right)\)

    Since, \(A ^{-1}=\frac{a d j A}{|A|}\)

    \(\Rightarrow A^{-1}=\frac{1}{-1}\left(\begin{array}{ccc}0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0\end{array}\right)\)

    \(\Rightarrow A ^{-1}=\left(\begin{array}{ccc}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right)= A\)

  • Question 7
    1 / -0

    If \(A B^{T}\) is defined as a square matrix then what is the order of the matrix \(B\), where matrix \(A\) has order \(2 \times 3\)?

    Solution
    Let the matrix \(B\) has an order \(p \times q\), i.e, \(p\) rows and \(q\) columns.
    Transpose of \(B\) is \(B'\) will have order \(q \times p\).
    For matrix, \(A B^{T}=\left[A_{(2 \times 3)} \times B_{(q \times p)}^{T }\right]\) is defined.
    \(\therefore q=3\)
    Given,
    \(AB ^{T}\) is a square matrix.
    \(AB ^{T}=\left[ A _{(2 \times 3)} \times B _{(3 \times p )}^{T}\right]\)
    \(\therefore p=2\)
    So, the order of \(B=p \times q=2 \times 3\)
     
  • Question 8
    1 / -0

    If \(A=\left[\begin{array}{cc}\sin \alpha & -\cos \alpha \\ \cos \alpha & \sin \alpha\end{array}\right]\), then for what value of \(\alpha, A\) is an identity matrix?

    Solution
    Given,  \(A=\left[\begin{array}{cc}\sin \alpha & -\cos \alpha \\ \cos \alpha & \sin \alpha\end{array}\right]\)
    As we know, Any square matrix in which all the elements are zero except those in the principal diagonal is called a diagonal matrix. A diagonal matrix in which all the principal diagonal elements are equal to \(1\) is called an identity matrix. It is also known as a unit matrix whereas an identity matrix of order \(n\) is denoted by \(I\).
    Value of \(\alpha\) such that \(A\) is an identity matrix.
    i.e., \(A=I\)
    \(\begin{aligned}
    &\left[\begin{array}{cc}
    \sin \alpha & -\cos \alpha \\
    \cos \alpha & \sin \alpha
    \end{array}\right]=\left[\begin{array}{ll}
    1 & 0 \\
    0 & 1
    \end{array}\right]\end{aligned}\)
    \(\therefore \sin \alpha=1\)
    \(\Rightarrow \sin \alpha=\sin 90^\circ\)\(\Rightarrow \alpha= 90^\circ\)
    And \(\cos \alpha=0 \)
    \(\Rightarrow \cos \alpha=\cos 90^{\circ}\)\(\Rightarrow \alpha= 90^{\circ}\)
    \(\therefore\) The required value of \(\alpha\) is \(90^{\circ}\).
  • Question 9
    1 / -0

    If \(A=\left[\begin{array}{cc}2 & 3 \\ -1 & 2\end{array}\right]=\frac{1}{2}(P+Q)\) where \(P\) is symmetric and \(Q\) is skew symmetric matrix then \(P\) and \(Q\) are:

    Solution
    Given,
    \(A=\left[\begin{array}{cc}
    2 & 3 \\
    -1 & 2
    \end{array}\right]=\frac{1}{2}(P+Q)\)
    Where \(P\) is symmetric and \(Q\) is a skew-symmetric matrix.
    As we know,
    Any square matrix can be be expressed as the sum of the symmetric and skew-symmetric matrix. i.e If \(A\) is a square matrix then \(A\) can be expressed as where \(A + A ^{\prime}\) is symmetric and \(A - A ^{\prime}\) is skew-symmetric matrix.
    On comparing \(A=\left[\begin{array}{cc}
    2 & 3 \\
    -1 & 2
    \end{array}\right]=\frac{1}{2}(P+Q)\) with \(A=\frac{1}{2}\left(A+A^{\prime}\right)+\frac{1}{2}\left(A-A^{\prime}\right)\) we get,
    \( P=A+A^{\prime}\) and \(Q=A-A^{\prime}\)
    As, \(A=\left[\begin{array}{cc}2 & 3 \\ -1 & 2\end{array}\right]\)
    \(\therefore A^{\prime}=\left[\begin{array}{cc}2 & -1 \\ 3 & 2\end{array}\right]\)
    So, \(\begin{aligned}P=\left[\begin{array}{cc}
    2 & 3 \\
    -1 & 2
    \end{array}\right]+\left[\begin{array}{cc}
    2 & -1 \\
    3 & 2
    \end{array}\right]\end{aligned}\)
    \(\begin{aligned}\Rightarrow P=\left[\begin{array}{ll}
    4 & 2 \\
    2 & 4
    \end{array}\right]\end{aligned}\)
    Similarly,
    \(\begin{aligned}
    &Q=\left[\begin{array}{cc}
    2 & 3 \\
    -1 & 2
    \end{array}\right]-\left[\begin{array}{cc}
    2 & -1 \\
    3 & 2
    \end{array}\right] \end{aligned}\)
    \(\begin{aligned} \Rightarrow Q=\left[\begin{array}{cc}
    0 & 4 \\
    -4 & 0
    \end{array}\right]
    \end{aligned}\)
    So,
    \(\begin{aligned}
    &P=\left[\begin{array}{ll}
    4 & 2 \\
    2 & 4
    \end{array}\right]\end{aligned}\) and \(\begin{aligned}Q=\left[\begin{array}{cc}
    0 & 4 \\
    -4 & 0
    \end{array}\right]
    \end{aligned}\)
  • Question 10
    1 / -0

    If \(A=\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right]\), then the expression \(A^3-2 A^2\) is:

    Solution

    Given,

    \(A=\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right]\)

    \(A^2=A \cdot A\)

    \(=\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right] \times\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right]\)

    \(=\left[\begin{array}{cc}1+1 & -1-1 \\ -1-1 & 1+1\end{array}\right]\)

    \(=\left[\begin{array}{cc}2 & -2 \\ -2 & 2\end{array}\right]\)

    \(A^3=A^2 \cdot A\)

    \(=\left[\begin{array}{cc}2 & -2 \\ -2 & 2\end{array}\right] \times\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right]\)

    \(=\left[\begin{array}{cc}2+2 & -2-2 \\ -2-2 & 2+2\end{array}\right]\)

    \(=\left[\begin{array}{cc}2 & -2 \\ -2 & 2\end{array}\right]\)

    \(=\left[\begin{array}{cc}4 & -4 \\ -4 & 4\end{array}\right]\)

    Now,

    \(A^3=\left[\begin{array}{cc}4 & -4 \\ -4 & 4\end{array}\right]\) and

    \(2 A^2=2 \times\left[\begin{array}{cc}2 & -2 \\ -2 & 2\end{array}\right]\)

    \(=\left[\begin{array}{cc}4 & -4 \\ -4 & 4\end{array}\right]\)

    \(\therefore A^3-2 A^2=\left[\begin{array}{cc}4 & -4 \\ -4 & 4\end{array}\right]-\left[\begin{array}{cc}4 & -4 \\ -4 & 4\end{array}\right]\)

    So, the expression \(A^3-2 A^2\) is a null matrix.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now