\(A ^{-1}=\frac{a d j A}{|A|}\)
We are given \(A=\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right)\)
On finding its determinant, we get,
\(| A |=0(0-0)-0(0-0)+1(0-1)=-1\)
\(\Rightarrow| A |=-1\).
Now,
Finding the cofactors of A, we get,
\(A _{11}=\left|\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right|=0, A _{12}=\left|\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right|=0, \quad A _{13}=\left|\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right|=-1\)
\(A_{21}=\left|\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right|=0, \quad A_{22}=\left|\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right|=-1, A_{23}=\left|\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right|=0\)
\(A _{31}=\left|\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right|=-1, \quad A _{32}=\left|\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right|=0, \quad A _{33}=\left|\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right|=0\)
i.e. \(\operatorname{adj}( A )=\left(\begin{array}{lll}A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33}\end{array}\right)\)
\(\Rightarrow \operatorname{adj}(A)=\left(\begin{array}{ccc}0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0\end{array}\right)\)
Since, \(A ^{-1}=\frac{a d j A}{|A|}\)
\(\Rightarrow A^{-1}=\frac{1}{-1}\left(\begin{array}{ccc}0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0\end{array}\right)\)
\(\Rightarrow A ^{-1}=\left(\begin{array}{ccc}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right)= A\)