Self Studies

Vector Algebra Test - 78

Result Self Studies

Vector Algebra Test - 78
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    If \(A=\left[\begin{array}{ccc}2 & x-3 & x-2 \\ 3 & -2 & -1 \\ 4 & -1 & -5\end{array}\right]\) is a symmetric matrix then \(x=?\)

    Solution

    Given:

    A is a symmetric matrix,

    \(\Rightarrow A ^{\top}= A\) or \(a _{ ij }= a _{ i }\)

    \(A =\left[\begin{array}{ccc}2 & x-3 & x-2 \\ 3 & -2 & -1 \\ 4 & -1 & -5\end{array}\right]\)

    So, by property of symmetric matrices

    \(\Rightarrow a_{12}=a_{21}\)

    \(\Rightarrow x-3=3\)

    \(\therefore x=6\)

  • Question 2
    1 / -0

    Find the value of \(X\) and \(Y\) if \(X+Y=\left[\begin{array}{cc}10 & 2 \\ 0 & 9\end{array}\right], X-Y=\left[\begin{array}{cc}6 & 12 \\ 0 & -5\end{array}\right]\).

    Solution
    Given,
    \(\begin{aligned}X+Y=\left[\begin{array}{cc}
    10 & 2 \\
    0 & 9
    \end{array}\right] \end{aligned}\)...(1)
    \(\begin{aligned}X-Y=\left[\begin{array}{cc}
    6 & 12 \\
    0 & -5
    \end{array}\right]
    \end{aligned}\)...(2)
    Adding equation (1) and (2), we get
    We know that,
    \(\left[\begin{array}{ll}
    A_1 & A_2 \\
    B_1 & B_2
    \end{array}\right]+\left[\begin{array}{ll}
    C_1 & C_2 \\
    D_1 & D_2
    \end{array}\right]=\left[\begin{array}{ll}
    A_1+C_1 & A_2+C_2 \\
    B_1+D_1 & B_2+D_2
    \end{array}\right]\)
    \(\begin{aligned}
    &2 X=\left[\begin{array}{cc}
    10 & 2 \\
    0 & 9
    \end{array}\right]+\left[\begin{array}{cc}
    6 & 12 \\
    0 & -5
    \end{array}\right]=\left[\begin{array}{cc}
    16 & 14 \\
    0 & 4
    \end{array}\right] \\
    &\therefore X=\left[\begin{array}{ll}
    8 & 7 \\
    0 & 2
    \end{array}\right]
    \end{aligned}
    \)
    Now, subtracting equation (2) from (1), we get
    \(\begin{aligned}
    &2 Y=\left[\begin{array}{cc}
    10 & 2 \\
    0 & 9
    \end{array}\right]-\left[\begin{array}{cc}
    6 & 12 \\
    0 & -5
    \end{array}\right]=\left[\begin{array}{cc}
    4 & -10 \\
    0 & 14
    \end{array}\right] \\
    &\therefore Y=\left[\begin{array}{cc}
    2 & -5 \\
    0 & 7
    \end{array}\right]
    \end{aligned}\)
    So, the value of \(\begin{aligned} X=\left[\begin{array}{ll}
    8 & 7 \\
    0 & 2
    \end{array}\right]
    \end{aligned}\) and \(\begin{aligned} Y=\left[\begin{array}{cc}
    2 & -5 \\
    0 & 7
    \end{array}\right]
    \end{aligned}\)
  • Question 3
    1 / -0

    Consider the matrix \(A=\left[\begin{array}{ccc}2 & 4 & 5 \\ 1 & 6 & 4 \\ 2 & 8 & 9\end{array}\right]\). Find the element:

    Solution
    \(a_{32}\) is the element represented in the form \(a_{\mathrm{ij}} \mathrm{i}\) is the row number and \(\mathrm{j}\) is the column number. Therefore, the element \(a_{32}\) is the element in the third row \((\mathrm{i}=3\) ) and second column \((\mathrm{j}=2)\) which is 8.
  • Question 4
    1 / -0

    What is the order of \(\left[\begin{array}{lll}4 & 4 & 1\end{array}\right]\left[\begin{array}{lll}3 & 2 & 5 \\ 9 & 7 & 4 \\ 6 & 4 & 1\end{array}\right]\) ?

    Solution
    Let \(\left[\begin{array}{lll}4 & 4 & 1\end{array}\right]\left[\begin{array}{lll}3 & 2 & 5 \\ 9 & 7 & 4 \\ 6 & 4 & 1\end{array}\right]= AB\)
    Order of matrix \(=\) no. of rows\(\times\) no. of column
    Order of matrix \(A\) is \((1 \times 3)\).
    Order of matrix \(B\) is \((3 \times 3)\).
    As we know,
    To multiply an \(m \times n\) matrix by \(n \times p\) matrix, the \(n\) must be the same and the result is an \(m \times p\) matrix.
    So, Order of \(A_{(1 \times 3)} B_{(3 \times 3)}\) is \((1 \times 3)\).
    \(\therefore\) Order of \(\left[\begin{array}{lll}4 & 4 & 1\end{array}\right]\left[\begin{array}{lll}3 & 2 & 5 \\ 9 & 7 & 4 \\ 6 & 4 & 1\end{array}\right]\) is \((1 \times 3)\).
  • Question 5
    1 / -0

    For \(A=\left[\begin{array}{ll}2 & 4 \\ 0 & 3\end{array}\right]\), then \(A^{-1}\) is given by :

    Solution

    If \(A =\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\) is a square matrix of order 2 , then \(A ^{-1}=\frac{1}{|A|} \operatorname{Adj~A}\)

    where, \(| A |= ad - bc\) and \(Adj A =\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]\)

    Given,

    \(A=\left[\begin{array}{ll}2 & 4 \\ 0 & 3\end{array}\right]\)

    \(A ^{-1}=\frac{1}{|A|} Adj A\)

    \(| A |=3 \times 2-4 \times(0)\)

    \(\Rightarrow| A |=6\)

    \(\operatorname{Adj} A=\left[\begin{array}{cc}3 & -4 \\ 0 & 2\end{array}\right]\)

    Therefore, \(A ^{-1}=\frac{1}{6}\left[\begin{array}{cc}3 & -4 \\ 0 & 2\end{array}\right]\)

  • Question 6
    1 / -0

    Order of \(\left[\begin{array}{lll}2 & 7 & 4 \\ 3 & 1 & 0\end{array}\right]\left[\begin{array}{l}5 \\ 4 \\ 3\end{array}\right]\) is:

    Solution
    Given,
    First matrix \(=\left[\begin{array}{ccc}2 & 7 & 4 \\ 3 & 1 & 0\end{array}\right]\)
    Number of rows \(\left(m_{1}\right)=2\)
    Number of columns \(\left(n_{1}\right)=3\)
    So, order of first matrix \(=2 \times 3\)
    And second matrix \(=\left[\begin{array}{l}5 \\ 4 \\ 3\end{array}\right]\)
    Number of rows \(\left(m_{2}\right)=3\)
    Number of columns \(\left(n_{2}\right)=1\)
    So, order of first matrix \(=3 \times 1\)
    As we know,
    Multiplication of matrices is possible if
    Number of column \((n_1)\) in the first matrix \(=\) Number of rows \((m_2)\) in the second matrix
    i.e., \(n_{1}=m_{2}\)
    \(\therefore n_{1}=m_{2}=3\)
    So, \(\left[\begin{array}{lll}2 & 7 & 4 \\ 3 & 1 & 0\end{array}\right]\left[\begin{array}{l}5 \\ 4 \\ 3\end{array}\right]\) is possible.
    As we know,
    Multiplication of matrices is possible if the order of the new matrix is a row of the first matrix and column of the second matrix.
    i.e., \(m_{1}\times n_{2}\)
    Now,
    Order of new matrix formed by multiplication \(= m _{1} \times n _{2}=2 \times 1\)
  • Question 7
    1 / -0

    If \(A =\left[\begin{array}{cc}4 & x +2 \\ 2 x -3 & x +1\end{array}\right]\) is symmetric, then \(x\) is equal to:

    Solution
    Given,
    \(A =\left[\begin{array}{cc}
    4 & x +2 \\
    2 x -3 & x +1
    \end{array}\right]\)
    A real square matrix \(A=\left(a_{i j}\right)\) is said to be symmetric, if \(A=A^{T}\)
    Where \(A^{T}=\) transpose of matrix \(A\)
    \(\begin{aligned}
    & A ^{ T }=\left[\begin{array}{cc}
    4 & 2 x -3 \\
    x +2 & x +1
    \end{array}\right] \\
    &\therefore A = A ^{T} \\
    &\Rightarrow\left[\begin{array}{cc}
    4 & x +2 \\
    2 x -3 & x +1
    \end{array}\right]=\left[\begin{array}{cc}
    4 & 2 x -3 \\
    x +2 & x +1
    \end{array}\right]
    \end{aligned}\)
    On comparing elements of both matrix, we get
    \( x+2=2 x-3 \)
    \(\Rightarrow 2+3=2x-x\)
    \(\therefore x=5\)
  • Question 8
    1 / -0

    If \(A =\left[\begin{array}{rr}0 & - i \\ i & 0\end{array}\right]\) and \(B =\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right]\) are matrices, then \(AB + BA\) is:

    Solution
    Given,
    \(A =\left[\begin{array}{rr}0 & - i \\ i & 0\end{array}\right]\)
    \(B =\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right]\)
    \(\therefore AB =\left[\begin{array}{rr}
    0 & - i \\
    i & 0
    \end{array}\right] \times\left[\begin{array}{rr}
    1 & 0 \\
    0 & -1
    \end{array}\right]\)
    We know that,
    \(X=\left[\begin{array}{cc}A_1 & A_2 \\ B_1 & B_2\end{array}\right], Y=\left[\begin{array}{cc}C_1 & C_2 \\ D_1 & D_2\end{array}\right]\).
    \(XY=\left[\begin{array}{cc}A_1C_1+A_2D_1 & A_1C_2+A_2D_2 \\ B_1C_1+B_2D_1 & B_1C_2+B_2D_2 \end{array}\right]\)
    \(=\left[\begin{array}{ll}
    0+0 & 0+ i \\
    i +0 & 0+0
    \end{array}\right]\)
    \(=\left[\begin{array}{ll}
    0 & i \\
    i & 0
    \end{array}\right]\)
    And \(BA =\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right] \times\left[\begin{array}{rr}0 & - i \\ i & 0\end{array}\right]\)
    \(=\left[\begin{array}{rr}0+0 & - i +0 \\ 0- i & 0+0\end{array}\right]\)
    \(=\left[\begin{array}{rr}0 & - i \\ - i & 0\end{array}\right]\)
    \(\therefore A B+B A=\left[\begin{array}{ll}
    0 & i \\
    i & 0
    \end{array}\right]+\left[\begin{array}{rr}
    0 & -i \\
    -i & 0
    \end{array}\right]\)
    \(=\left[\begin{array}{cc}
    0+0 & i-i \\
    i-i & 0+0
    \end{array}\right]\)
    \(=\left[\begin{array}{ll}
    0 & 0 \\
    0 & 0
    \end{array}\right]\)
    So, \(AB+BA\) is a null matrix.
  • Question 9
    1 / -0

    If \(A =\left[\begin{array}{ccc}1 & -1 & 0 \\ 3 & 2 & -1\end{array}\right]\) and \(B =\left[\begin{array}{l}1 \\ 3 \\ 5\end{array}\right]\), find \(( AB )^{T}\).

    Solution
    Given,
    \(A =\left[\begin{array}{ccc}1 & -1 & 0 \\ 3 & 2 & -1\end{array}\right]\) and \(B =\left[\begin{array}{l}1 \\ 3 \\ 5\end{array}\right]\)
    \(\Rightarrow AB =\left[\begin{array}{ccc}1 & -1 & 0 \\ 3 & 2 & -1\end{array}\right] \times\left[\begin{array}{l}1 \\ 3 \\ 5\end{array}\right]\)
    We know that,
    \(\begin{aligned}
    &X=\left[\begin{array}{ll}
    A_1 & A_2 & A_3 \\
    B_1 & B_2 & B_3
    \end{array}\right], Y=\left[\begin{array}{ll}
    D_1 \\
    E_1 \\
    F_1
    \end{array}\right] \\
    &X Y=\left[\begin{array}{ll}
    A_1 D_1+A_2 E_1+A_3F_1 \\
    B_1 D_1+B_2 E_1+B_3F_1
    \end{array}\right]
    \end{aligned}\)
    So,
    \(AB =\left[\begin{array}{c}1-3+0 \\ 3+6-5\end{array}\right]\)
    \(\Rightarrow AB =\left[\begin{array}{c}-2 \\ 4\end{array}\right]\)
    As we know,
    The new matrix obtained by interchanging the rows and columns of the original matrix is called as the transpose of the matrix. It is denoted by \(A'\) or \(A^T\).
    \(\therefore( AB )^{T}=\left[\begin{array}{ll}-2 & 4\end{array}\right]\)
  • Question 10
    1 / -0

    If \(\left[\begin{array}{ccc}1 & -3 & 2 \\ 2 & -8 & 5 \\ 4 & 2 & \lambda\end{array}\right]\) is not an invertible matrix, then what is the value of \(\lambda\)?

    Solution
    Given,
    \(A =\left[\begin{array}{ccc}1 & -3 & 2 \\ 2 & -8 & 5 \\ 4 & 2 & \lambda\end{array}\right]\) is not an invertible matrix.
    As we know,
    If the matrix \(A\) is non singular matrix then \(| A |=0\).
    \(\therefore \left|\begin{array}{ccc}
    1 & -3 & 2 \\
    2 & -8 & 5 \\
    4 & 2 & \lambda
    \end{array}\right|=0 \)
    We know that,
    \(X=\left[\begin{array}{ll}
    A_1 & A_2 & A_3 \\
    B_1 & B_2 & B_3\\
    C_1 & C_2 & C_3
    \end{array}\right]\)
    \(X=A_1(B_2C_3-B_3C_2)-A_2(B_1C_3-B_3C_1)+A_3(B_1C_2-B_2C_1)\)
    Then,
    \( 1(-8 \lambda-10)+3(2 \lambda-20)+2(4+32)=0 \)
    \(\Rightarrow-8 \lambda-10+6 \lambda-60+72=0 \)
    \(\Rightarrow-2 \lambda+2=0 \)
    \(\Rightarrow \lambda=1\)
    So, If \(\left[\begin{array}{ccc}1 & -3 & 2 \\ 2 & -8 & 5 \\ 4 & 2 & \lambda\end{array}\right]\) is not an invertible matrix, then the value of \(\lambda\) is \(1\).
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now