Self Studies

Control Systems Test 2

Result Self Studies

Control Systems Test 2
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    2 / -0.33

    Consider the polynomial

    P(s) = s5 + 5s4 + 11s3 + 23s2 + 28s + 12

    Using the Routh Hurwitz criteria, which of the following is/are true?

    Solution

    Concept:

    The characteristic equation for a given open-loop transfer function G(s) is

    1 + G(s) H(s) = 0

    According to the Routh tabulation method,

    The system is said to be stable if there are no sign changes in the first column of Routh array

    The number of poles lies on the right half of s plane = number of sign changes

    Calculation:

    Given polynomial is,

    s5 + 5s4 + 11s3 + 23s2 + 28s + 12

    By applying Routh Hurwitz criteria,

    s5

    1

    11

    28

    s4

    5

    23

    12

    s3

    6.4

    25.6

    0

    s2

    3

    12

    0

    s1

    0(6)

    0

    0

    s0

    12

     

     

     

    s1 row is zero. So, there are two poles on jω axis.

    3s2 + 12 = 0

    s = ± 2j

    AE : 3s2 + 12 = 0

    By differentiating

    6s = 0

    Total number of poles = 5

    Number of sign changes = zero

    Number of right side poles = zero

    Number of left side poles = 5 – 2 = 3

    As there are poles on jω axis, the system is marginally stable.

  • Question 2
    2 / -0.33

    The open-loop transfer function of a unity feedback system is given by

    \(G\left( s \right) = \frac{{10}}{{s\left( {\frac{s}{5} + 1} \right)\left( {\frac{s}{{20}} + 1} \right)}}\) 

    In G(s) plane, the Nyquist plot of G(s) passes through the negative real axis at the point
    Solution

    \(G\left( s \right) = \frac{{1000}}{{s\left( {s + 5} \right)\left( {s + 20} \right)}}\) 

    \(\angle G\left( {j\omega } \right)H\left( {j\omega } \right) = - \frac{\pi }{2} - {\tan ^{ - 1}}\left( {\frac{\omega }{5}} \right) - {\tan ^{ - 1}}\left( {\frac{\omega }{{20}}} \right)\;\) 

    At phase cross over frequency,

    \( - \frac{\pi }{2} - {\tan ^{ - 1}}\left( {\frac{\omega }{5}} \right) - {\tan ^{ - 1}}\left( {\frac{\omega }{{20}}} \right) = - \pi \) 

    \( \Rightarrow {\tan ^{ - 1}}\left( {\frac{{\frac{\omega }{5} + \frac{\omega }{{20}}}}{{1 - \frac{\omega }{5} \times \frac{\omega }{{20}}}}} \right) = \frac{\pi }{2}\) 

    ω2 = 100

    ω = 10 rad/sec

    At ω = 10,

    \(\left| {G\left( {j\omega } \right)H\left( {j\omega } \right)} \right| = \frac{{1000}}{{10\sqrt {{5^2} + {{10}^2}} \sqrt {{{20}^2} + {{10}^2}} }}\) 

    a = 0.4

    Nyquist plot of G(s) passes through the negative real axis at the point (-a, 0)

    = (-0.4, 0)

  • Question 3
    2 / -0.33

    A unity feedback control system has an open-loop transfer function

    \(G\left( s \right) = \frac{A}{{s\left( {s + a} \right)}}\)

    The sensitivity of the closed-loop transfer function to the changes in the parameter is
    Solution

    Concept:

    The sensitivity of the overall gain ‘M’ to the variation in ‘G’ is defined as

    Sensitivity = % change in M/% change in G

    \(S_G^M = \frac{{\frac{{\delta M}}{M}}}{{\frac{{\delta G}}{G}}} = \frac{{\delta M}}{{\delta G}} \times \frac{G}{M}\)

    Where δM denotes the incremental change in M due to the incremental change in G.

    Application:

    \(G = \frac{A}{{s\left( {s + a} \right)}} = \frac{A}{{{s^2} + as}}\)

    Closed-loop transfer function is

    \(TF = \frac{G}{{1 + GH}} = \frac{{\frac{A}{{{s^2} + as}}}}{{1 + \frac{A}{{{s^2} + as}}}} = \frac{A}{{{s^2} + as + A}}\)

    \(\frac{{\partial T}}{{\partial a}} = \frac{{ - As}}{{{{\left( {{s^2} + as + A} \right)}^2}}}\)

    Sensitivity \(= \frac{{\partial T}}{{\partial a}} \times \frac{a}{T}\) 

    \(= \frac{{ - As}}{{{{\left( {{s^2} + as + A} \right)}^2}}} \times \frac{a}{{\frac{a}{{\left( {{s^2} + as + A} \right)}}}}\)

    \(= \frac{{ - as}}{{\left( {{s^2} + as + A} \right)}}\)

  • Question 4
    2 / -0.33

    The system matrix of a continuous time system, described in the state variable from is

    \(\left[ {\begin{array}{*{20}{c}}x&0&0\\0&y&{ - 1}\\0&1&{ - 2}\end{array}} \right]\)

    The range of x and y so that the system is stable is
    Solution

    For the system to be stable, the poles should lie on left half of the s-plane.

    The roots of the characteristic equation are the poles. The characteristic equation is given below.

    |sI - A| = 0

    \(sI - A = \left[ {\begin{array}{*{20}{c}}s&0&0\\0&s&0\\0&0&s\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}x&0&0\\0&y&{ - 1}\\0&1&{ - 2}\end{array}} \right]\)
    \( = \left[ {\begin{array}{*{20}{c}}{s - x}&0&0\\0&{s - y}&1\\0&{ - 1}&{s + 2}\end{array}} \right]\)
    \(\left| {\begin{array}{*{20}{c}}{s - x}&0&0\\0&{s - y}&1\\0&{ - 1}&{s + 2}\end{array}} \right| = 0\)

    (s - x) [(s - y)(s + 2) + 1] = 0

    For the system to be stable, the roots of the above equation must be less than zero.

    x < 0

    s2 – 2y – sy + 2s + 1 = 0

    s2 + (2 - y) s + 1 – 2y = 0

    2 – y > 0 and (1 – 2y) > 0

    y < 2 and \(y < \frac{1}{2}\)

    So, the required range of x and y are: x < 0 and \(y < \frac{1}{2}\)
  • Question 5
    2 / -0.33

    A system is represented by the following equation

    \(\ddot y\left( t \right) + 6\dot y\left( t \right) + 5y\left( t \right) = u\left( t \right)\)

    For the unit response of the system, the steady state value of the output is _______
    Solution

    Concept:

    Final value theorem:

    • A final value theorem allows the time domain behavior to be directly calculated by taking a limit of a frequency domain expression
    • Final value theorem states that the final value of a system can be calculated by

    \(f\left( \infty \right) = \mathop {\lim }\limits_{s \to 0} sF\left( s \right)\)

     Where F(s) is the Laplace transform of the function.

    • For the final value theorem to be applicable system should be stable in steady-state and for that real part of poles should lie on the left side of s plane.

    Initial value theorem:

    \(C\left( 0 \right) = \mathop {\lim }\limits_{t \to 0} c\left( t \right) = \mathop {\lim }\limits_{s \to \infty } sC\left( s \right)\)

    It is applicable only when the number of poles of C(s) is more than the number of zeros of C(s).

    Calculation:

    \(\ddot y\left( t \right) + 6\dot y\left( t \right) + 5y\left( t \right) = u\left( t \right)\)

    By applying Laplace transform

    \({s^2}y\left( s \right) + 6sy\left( s \right) + 5 = u\left( s \right)\)

    \(\Rightarrow \frac{{y\left( s \right)}}{{u\left( s \right)}} = \frac{1}{{{s^2} + 6s + 5}}\)

    For step input, the output of the system is

    \(y\left( s \right) = \frac{1}{{{s^2} + 6s + 5}} \cdot \frac{1}{s}\)

    By using final value theorem, the steady state value of the output is

    \( = \mathop {\lim }\limits_{s \to 0} s \cdot y\left( s \right)\)

    \(= \mathop {\lim }\limits_{s \to 0} s \cdot \frac{1}{{{s^2} + 6s + 5}} \cdot 1/s = \frac{1}{5} = 0.2\)

  • Question 6
    2 / -0.33

    The transfer function of a control system is given by

    \(\frac{{C\left( s \right)}}{{R\left( s \right)}} = \frac{{25}}{{{s^2} + 6s + 25}}\) 

    The first maximum value of the response occurs at a time tmax given by
    Solution

    tmax is nothing but the peak time.

    \({t_p} = \frac{{n\pi }}{{{\omega _d}}}\) 

    first maxima occur at n = 1

    \({t_p} = \frac{\pi }{{{\omega _d}}}\) 

    Given transfer function,

    \(\frac{{C\left( s \right)}}{{R\left( s \right)}} = \frac{{25}}{{{s^2} + 6s + 25}}\) 

    ω2n = 25 ⇒ ωn 5

    \(2\xi {\omega _n} = 6 \Rightarrow \xi = \frac{6}{{2 \times 5}} = 0.6\) 

    \({t_p} = \frac{\pi }{{{{\rm{\omega }}_d}}} = \frac{\pi }{{{{\rm{\omega }}_n}\sqrt {\left( {1 - {\xi ^2}} \right)} }}\) 

    \(= \frac{\pi }{{5\sqrt {1 - {{\left( {0.6} \right)}^2}} }} = \frac{\pi }{4}\) 

  • Question 7
    2 / -0.33

    For the transfer function, \(G\left( s \right) = \frac{{5\left( {s + 4} \right)}}{{s\left( {s + 0.25} \right)\left( {{s^2} + 10s + 25} \right)}}\), the values of the constant gain term and the highest corner frequency of the Bode plot respectively are:

    Solution

    \(G\left( s \right) = \frac{{5\left( {s + 4} \right)}}{{s\left( {s + 0.25} \right)\left( {{s^2} + 10s + 25} \right)}}\)

    \(= \frac{{5 \times 4\left( {1 + \frac{s}{4}} \right)}}{{0.25 \times 25 \times s \times \left( {1 + \frac{s}{{0.25}}} \right)\left( {1 + \frac{{10s}}{{25}} + \frac{{{s^2}}}{{25}}} \right)}}\)

    \(= \frac{{3.2\left( {1 + \frac{s}{4}} \right)}}{{s\left( {1 + \frac{s}{{0.25}}} \right)\left( {1 + \frac{{10s}}{{25}} + \frac{{{s^2}}}{{25}}} \right)}}\)

    Constant gain = 3.2

    Corner frequencies = 0.25, 4, 5

    Highest corner frequency = 5 rad/sec

  • Question 8
    2 / -0.33

    Consider the open-loop transfer function \(G\left( s \right)H\left( s \right) = \frac{K}{{s\left( {{s^2} + 6s + 25} \right)}}\). The angle of departure at the complex pole with positive imaginary part (angle measured in the anticlockwise direction and to be answered in between 0 and 360) in degrees is _______

    Solution

    \(G\left( s \right)H\left( s \right) = \frac{K}{{s\left( {{s^2} + 6s + 25} \right)}}\) 

    Poles: s = 0,s = -3 + 4j, -3 – 4j

    At s = -3 + 4j

    \(G\left( s \right)H\left( s \right) = \frac{K}{{\left( { - 3 + 4j} \right)\left( {{{\left( { - 3 + 4j} \right)}^2} + 6\left( { - 3 + 4j} \right) + 25} \right)}}\) 

    \( = \frac{K}{{\left( { - 3 + 4j} \right)\left( {9 - 16 - 12j - 18 + 24j + 25} \right)}}\) 

    \(= \frac{K}{{\left( { - 3 + 4j} \right)\left( {12j} \right)}}\) 

    \(= \frac{K}{{\left( { - 48 - j36} \right)}}\) 

    \(\angle G\left( s \right)H\left( s \right) = - \left[ {180 + {{\tan }^{ - 1}}\left( {\frac{{36}}{{48}}} \right)} \right]\) 

    = -216.86

    Angle of departure = 180 + (-216.86)

    = -36.86°

    = 323.14°

  • Question 9
    2 / -0.33

    A certain linear time invariant system has the state and the output equations given below

    \(\left[ {\begin{array}{*{20}{c}}{{{\dot x}_1}}\\{{{\dot x}_2}}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}1&{ - 1}\\0&1\end{array}} \right]\left[ {\begin{array}{*{20}{c}}{{x_1}}\\{{x_2}}\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}0\\1\end{array}} \right]u\)

    \(y = \left[ {1\;\;1} \right]\left[ {\begin{array}{*{20}{c}} {{x_1}}\\ {{x_2}} \end{array}} \right]\)

    If \(\left[ {\begin{array}{*{20}{c}} {{x_1}\left( 0 \right)}\\ {{x_2}\left( 0 \right)} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 1\\ { - 1} \end{array}} \right]\)and u(0) = -1, then \(\frac{{dy}}{{dt}}\;at\;t = 0\) is ______
    Solution

    \(y = \left[ {1\;\;1} \right]\left[ {\begin{array}{*{20}{c}} {{x_1}}\\ {{x_2}} \end{array}} \right]\)

    y(t) = x1(t) + x2(t)

    By differentiating the above equation

    \(\frac{d}{{dt}}y\left( t \right) = \frac{d}{{dt}}{x_1}\left( t \right) + \frac{d}{{dt}}{x_2}\left( t \right)\)


    \(\left[ {\begin{array}{*{20}{c}} {{{\dot x}_1}\left( t \right)}\\ {{{\dot x}_2}\left( t \right)} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 1&{ - 1}\\ 0&1 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{x_1}}\\ {{x_2}} \end{array}} \right] + \left[ {\begin{array}{*{20}{c}} 0\\ 1 \end{array}} \right]u\)

    At t = 0

    \(\left[ {\begin{array}{*{20}{c}} {{{\dot x}_1}\left( 0 \right)}\\ {{{\dot x}_2}\left( 0 \right)} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 1&{ - 1}\\ 0&1 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} 1\\ { - 1} \end{array}} \right] + \left[ {\begin{array}{*{20}{c}} 0\\ 1 \end{array}} \right]\left[ { - 1} \right]\)
    \(= \left[ {\begin{array}{*{20}{c}} 2\\ { - 1} \end{array}} \right] + \left[ {\begin{array}{*{20}{c}} 0\\ { - 1} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 2\\ { - 2} \end{array}} \right]\)

    Now, \(\frac{d}{{dt}}y\left( 0 \right) = \frac{d}{{dt}}{x_1}\left( 0 \right) + \frac{d}{{dt}}{x_2}\left( 0 \right)\)

    = ẋ1(0) + ẋ2(0)

    = 2 – 2 = 0 

  • Question 10
    2 / -0.33

    Consider a plant whose transfer function is \(\frac{2}{{s\left( {s + 4} \right)}}\). It is desired that a lead compensator is used to design a negative feedback closed loop system with this plant.

    The lead compensator needs to provide a maximum phase lead of 40° and this maximum phase lead angle should be provided at a frequency of 5 rad/sec.

    It is desired that the static velocity error constant of the compensated system to be 10.

    Then the transfer function of the lead compensator is
    Solution

    Concept:

    The transfer function of the phase controller is given by \(G\left( s \right)=\frac{1+aTs}{1+Ts}\)

    Where, a > 1 for phase lead controller

    a < 1 for phase lag controller

    Maximum phase lead/lag frequency \({{\omega }_{m}}=\frac{1}{T\sqrt{a}}\)

    Maximum phase lead/lag \({{\phi }_{m}}={{\tan }^{-1}}\left( \frac{a-1}{2\sqrt{a}} \right)={{\sin }^{-1}}\left( \frac{a-1}{a+1} \right)\)

    Calculation:

    Maximum phase lead = 40°

    \( \Rightarrow {\sin ^{ - 1}}\left( {\frac{{a - 1}}{{a + 1}}} \right) = 40^\circ \)

    \( \Rightarrow \frac{{a - 1}}{{a + 1}} = 0.643\)

    ⇒ a – 1 = 0.643a + 0.643

    ⇒ a = 4.6

    The maximum phase lead angle should be provided at a frequency of 5 rad/sec.

    \( \Rightarrow \frac{1}{{T\sqrt a }} = 5\)

    \( \Rightarrow \frac{1}{{T\sqrt {4.6} }} = 5\)

    ⇒ T = 0.093

    Now, the transfer function is \({G_c}\left( s \right) = \frac{{1 + aTs}}{{1 + Ts}}\)

    \( = K\frac{{1 + 0.428s}}{{1 + 0.093s}}\)

    \( = K'\frac{{s + 2.3}}{{s + 10.7}}\)

    Now, the open-loop transfer function of the compensated system is,

    \(G\left( s \right){G_c}\left( s \right) = \frac{2}{{s\left( {s + 4} \right)}} \times K'\frac{{s + 2.3}}{{s + 10.7}}\)

    Velocity error coefficient, \({K_v} = \mathop {\lim }\limits_{s \to 0} s \times \frac{2}{{s\left( {s + 4} \right)}} \times K'\frac{{s + 2.3}}{{s + 10.7}} = K'\left( {\frac{2}{4}} \right)\left( {\frac{{2.3}}{{10.7}}} \right)\)

    \( \Rightarrow 10 = K'\left( {\frac{2}{4}} \right)\left( {\frac{{2.3}}{{10.7}}} \right)\)

    ⇒ K’ = 93

    Now, the transfer function of the lead compensator is

    \({G_c}\left( s \right) = \frac{{93\left( {s + 2.3} \right)}}{{\left( {s + 10.7} \right)}}\)

  • Question 11
    2 / -0.33

    The unity feedback system has forward path transfer function.

    \(G\left( s \right) = \frac{K}{{s\left( {s + 1} \right)\left( {s + 2} \right)}}\)

    What is the maximum value of K that will make its gain margin zero?
    Solution

    Gain margin \(= 20\log \left( {\frac{1}{{G\left( s \right)H\left( s \right)}}} \right)\) dB at ω = ωpc

    Where ωpc = phase cross over frequency.

    At ω = ωpc, ∠G(s) H(s) = -180°

    \(G\left( s \right)H\left( s \right) = \frac{K}{{s\left( {s + 1} \right)\left( {s + 2} \right)}}\)

    \(G\left( {j\omega } \right)H\left( {j{\rm{\omega }}} \right) = \frac{k}{{j{\rm{\omega }}\left( {1 + j{\rm{\omega }}} \right)\left( {2 + j{\rm{\omega }}} \right)}}\)

    ∠G(jωpc) H(jωpc) = -180°

    \(\Rightarrow - 90 - {\tan ^{ - 1}}\left( {\rm{\omega }} \right) - {\tan ^{ - 1}}\left( {\frac{{\rm{\omega }}}{2}} \right) = - 180\)

    \(\Rightarrow {\tan ^{ - 1}}\left( {\rm{\omega }} \right) + ta{n^{ - 1}}\left( {\frac{{\rm{\omega }}}{2}} \right) = 90\)

    \(\Rightarrow {\tan ^{ - 1}}\left( {\frac{{{\rm{\omega }} + \frac{{\rm{\omega }}}{2}}}{{1 - {\rm{\omega }}.\frac{{\rm{\omega }}}{2}}}} \right) = 90^\circ\)

    \(\Rightarrow 1 - \frac{{{{\rm{\omega }}^2}}}{2} = 0\)

    \(\Rightarrow {{\rm{\omega }}_{PC}} = \sqrt 2 \;\;rad/sec\)

    \(\left| {G\left( {j{{\rm{\omega }}_{pc}}} \right)H\left( {j{{\rm{\omega }}_{pc}}} \right)} \right| = \left| {\frac{K}{{\left( {j\sqrt 2 } \right)\left( {1 + j\sqrt 2 } \right)\left( {2 + j\sqrt 2 } \right)}}} \right|\;\)

    \(= \frac{K}{{\sqrt 2 \sqrt 3 \sqrt 6 }} = \frac{K}{6}\)

    \(GM = 20\log \left( {\frac{1}{{\frac{K}{6}}}} \right) = 20\log \left( {\frac{6}{K}} \right)\)

    Given that GM is zero

    \(\Rightarrow 20\log \left( {\frac{6}{K}} \right) = 0\)

    \(\Rightarrow \frac{6}{K} = 1 \Rightarrow K = 6\)
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now