Concept:
The transfer function of the phase controller is given by \(G\left( s \right)=\frac{1+aTs}{1+Ts}\)
Where, a > 1 for phase lead controller
a < 1 for phase lag controller
Maximum phase lead/lag frequency \({{\omega }_{m}}=\frac{1}{T\sqrt{a}}\)
Maximum phase lead/lag \({{\phi }_{m}}={{\tan }^{-1}}\left( \frac{a-1}{2\sqrt{a}} \right)={{\sin }^{-1}}\left( \frac{a-1}{a+1} \right)\)
Calculation:
Maximum phase lead = 40°
\( \Rightarrow {\sin ^{ - 1}}\left( {\frac{{a - 1}}{{a + 1}}} \right) = 40^\circ \)
\( \Rightarrow \frac{{a - 1}}{{a + 1}} = 0.643\)
⇒ a – 1 = 0.643a + 0.643
⇒ a = 4.6
The maximum phase lead angle should be provided at a frequency of 5 rad/sec.
\( \Rightarrow \frac{1}{{T\sqrt a }} = 5\)
\( \Rightarrow \frac{1}{{T\sqrt {4.6} }} = 5\)
⇒ T = 0.093
Now, the transfer function is \({G_c}\left( s \right) = \frac{{1 + aTs}}{{1 + Ts}}\)
\( = K\frac{{1 + 0.428s}}{{1 + 0.093s}}\)
\( = K'\frac{{s + 2.3}}{{s + 10.7}}\)
Now, the open-loop transfer function of the compensated system is,
\(G\left( s \right){G_c}\left( s \right) = \frac{2}{{s\left( {s + 4} \right)}} \times K'\frac{{s + 2.3}}{{s + 10.7}}\)
Velocity error coefficient, \({K_v} = \mathop {\lim }\limits_{s \to 0} s \times \frac{2}{{s\left( {s + 4} \right)}} \times K'\frac{{s + 2.3}}{{s + 10.7}} = K'\left( {\frac{2}{4}} \right)\left( {\frac{{2.3}}{{10.7}}} \right)\)
\( \Rightarrow 10 = K'\left( {\frac{2}{4}} \right)\left( {\frac{{2.3}}{{10.7}}} \right)\)
⇒ K’ = 93
Now, the transfer function of the lead compensator is
\({G_c}\left( s \right) = \frac{{93\left( {s + 2.3} \right)}}{{\left( {s + 10.7} \right)}}\)