Self Studies

Mathematics Test-9

Result Self Studies

Mathematics Test-9
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    4 / -1
    If the lines \(x^{2}+2 x y-35 y^{2}-4 x+44 y-12=0\) and \(5 x+\lambda y-8=0\) are concurrent, then the value of \(\lambda\) is:
    Solution
    Point of intersection of pairs of line represented by \(a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0\) is
    \(\left(\frac{h f-b g}{a b-h^{2}}, \frac{g h-a f}{a b-h^{2}}\right)\)
    For the lines
    \(x^{2}+2 x y-35 y^{2}-4 x+44 y-12=0\)
    \(a=1, h=1, b=-35,9=-2, f=22, \quad c=-12\)
    \(\frac{h_{1}-b g}{a b-h^{2}}=\frac{1(22)-(-35)(-2)}{1(-35)-1^{2}}=\frac{22-70}{-36}=\frac{-48}{-36}=\frac{4}{3}\)
    \(\frac{9 h-17 f}{a b-h^{2}}=\frac{(-2)(1)-(1) 22}{1(-35)-1^{2}}=\frac{-24}{-36}=\frac{2}{3}\)
    Point of intersection \(=\left(\frac{4}{3}, \frac{2}{3}\right)\)
    This must satisfy \(5 x+\lambda y-8=0 \Rightarrow 5\left(\frac{4}{3}\right)+2\left(\frac{2}{3}\right)-8=0\)
    \(\Rightarrow 20+2 \lambda-24=0\)
    \(\Rightarrow2 \lambda=4\)
    \(\Rightarrow\lambda=2\)
  • Question 2
    4 / -1
    If \(\left(\mathrm{a}, \mathrm{a}^{2}\right)\) falls inside the angle made by the lines \(\mathrm{y}=\frac{\mathrm{x}}{2}, \mathrm{x}>0\) and \(\mathrm{y}=3 \mathrm{x}, \mathrm{x}>0,\) then a belongs to
    Solution


    Since, the given point \(\left(\mathrm{a}, \mathrm{a}^{2}\right)\) lies inside the angle between two lines.

    Then, \(\mathrm{a}^{2}-\frac{\mathrm{a}}{2}>0\) and \(\mathrm{a}^{2}-3 \mathrm{a}<0\)
    \(\Rightarrow \mathrm{a}\left(\mathrm{a}-\frac{1}{2}\right)>0\) and \(\mathrm{a}(\mathrm{a}-3)<0\)
    \(\Rightarrow \mathrm{a}>0\) and \(\mathrm{a}>\frac{1}{2}\) or \(\mathrm{a}<0\) and \(\mathrm{a}<\frac{1}{2}\)
    and \(\mathrm{a}<0, \mathrm{a}>3\) or \(\mathrm{a}>0, \mathrm{a}<3\)
    \(\Rightarrow \mathrm{a}>\frac{1}{2}\) or a \(<0\) and \(0<\mathrm{a}<3\)
    \(\Rightarrow \mathrm{a} \in(-\infty, 0) \cup\left(\frac{1}{2}, \infty\right)\) and \(\mathrm{a} \in(0,3)\)
    \(\Rightarrow \mathrm{a} \in\left(\frac{1}{2}, 3\right)\)
  • Question 3
    4 / -1

    What is the degree of the differential equation \(\mathrm{y}=\mathrm{x}\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)^{2}+\left(\frac{\mathrm{dx}}{\mathrm{dy}}\right) ?\)

    Solution

    Given:

    \(\mathrm{y=x\left(\frac{d y}{d x}\right)^{2}+\left(\frac{d x}{d y}\right)}\)

    \(\Rightarrow\mathrm{y=x\left(\frac{d y}{d x}\right)^{2}+\frac{1}{\left(\frac{d y}{d x}\right)}}\)

    \(\Rightarrow \mathrm{y}\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)=\mathrm{x}\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)^{3}+1\)

    For the given differential equation the highest order derivative is 1.

    Now, the power of the highest order derivative is 3.

    We know that the degree of a differential equation is the power of the highest derivative.

    Therefore, the degree of the differential equation is \(3 .\)

  • Question 4
    4 / -1
    In a football championship, there were played 153 matches. Every team played one match with each other. The number of teams participating in the championship is:
    Solution
    Given \({ }^{n} C_{2}=153\)
    Let there are \(n\) teams.
    Each team play to every other team in, \({ }^{n} C_{23}\) ways.
    \(\Rightarrow \frac{n !}{(n-2) ! 2 !}=153\)
    \(\Rightarrow n(n-1)=306 \Rightarrow n^{2}-n-306=0\)
    \(\Rightarrow(n-18)(n+17)=0 \Rightarrow n=18 \quad(\because n\) is never negative \()\)
  • Question 5
    4 / -1
    Evaluate: \(\lim _{x \rightarrow 0} \frac{\tan x-\sin x}{x^{3}}\)
    Solution

    \(\Rightarrow \frac{\tan x-\sin x}{x^{3}}=\frac{1}{x^{3}}\left(\frac{\sin x}{\cos x}-\sin x\right)\)

    \(\Rightarrow\frac{\tan x-\sin x}{x^{3}}=\left(\frac{\sin x}{x}\right)\left(\frac{1-\cos x}{x^{2}}\right)\left(\frac{1}{\cos x}\right)\)

    We can use now the well known trigonometric limit:

    \(\lim _{x \rightarrow 0} \frac{\sin x}{x}=1\) and using the trigonometric identity.

    We have:

    \(\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}\)

    \(=\lim _{x \rightarrow 0} \frac{2 \sin ^{2}\left(\frac{x}{2}\right)}{x^{2}}\)

    \(=\frac{1}{2} \lim _{x \rightarrow 0}\left(\frac{\sin \left(\frac{x}{2}\right)}{\frac{x}{2}}\right)^{2}=\frac{1}{2}\)

    While the third function is continuous so:

    \(\lim _{x \rightarrow 0} \frac{1}{\cos x}=\frac{1}{1}=1\) and we can conclude that:

    \(\lim _{x \rightarrow 0} \frac{\tan x-\sin x}{x^{3}}\)

    \(=\lim _{x \rightarrow 0}\left(\frac{\sin x}{x}\right)\left(\frac{1-\cos x}{x^{2}}\right)\left(\frac{1}{\cos x}\right)\)

    \(=1 \times \frac{1}{2} \times 1=\frac{1}{2}\)

  • Question 6
    4 / -1

    Let a function \(f: \mathrm{R} \rightarrow \mathrm{R}\) satisfy the equation \(f(\mathrm{x}+\mathrm{y})=f(\mathrm{x})+f(\mathrm{y})\) for all \(\mathrm{x}, \mathrm{y} .\) If the function \(f(\mathrm{x})\) is continuous at \(x=0,\) then

    Solution

    Since \(f(x)\) is continuous at \(x=0\)

    \(\therefore \lim _{x \rightarrow 0} f(x)=f(0)\)

    Take any point \(x=a,\) then at \(x=a\)

    \(\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} f(a+h)\)

    \(\Rightarrow \lim _{h \rightarrow 0}[f(a)+f(h)]\)

    \([\because f(x+y)=f(x)+f(y)]\)

    \(=f(a)+\lim _{h \rightarrow 0} f(h)=f(a)+f(0)\)

    \(=f(a+0)=f(a)\)

    \(\therefore f(x)\) is continuous at \(x=a\) since \(x=a\) is any arbitrary point, therefore \(f(x)\) is continuous for all \(x\).

  • Question 7
    4 / -1
    The tangent to the curve \(\mathrm{y}=\mathrm{x}^{3}-6 \mathrm{x}^{2}+9 \mathrm{x}+4,0 \leq \mathrm{x} \leq 5\) has maximum slope at \(x\) which is equal to __________.
    Solution

    Now, \(\frac{d y}{d x}=3 x^{2}-12 x+9\)

    Let \(u=\frac{d y}{d x}=3 x^{2}-12 x+9\)

    Now, \(\frac{d u}{d x}=6 x-12\)

    Put \(\frac{d u}{d x}=0\) for maximum or minimum

    \(\therefore 6 x-12=0\)

    \(\Rightarrow x=2\)

    Now, at \(x=0, u=9\)

    at \(x=2, \quad u=-3\)

    and at \(x=5, u=24\)

    Thus, the maximum of \(u(x), 0 \leq x \leq 5\) is \(u(5)\)

    \(\therefore x=5\)

  • Question 8
    4 / -1

    What is the value of the determinant \(\left|\begin{array}{ccc}\mathrm{i} & \mathrm{i}^{2} & \mathrm{i}^{3} \\ \mathrm{i}^{4} & \mathrm{i}^{6} & \mathrm{i}^{8} \\ \mathrm{i}^{9} & \mathrm{i}^{12} & \mathrm{i}^{15}\end{array}\right|\) where \(\mathrm{i}=\sqrt{-1} ?\)

    Solution

    Given determinant is \(\left|\begin{array}{ccc}\mathrm{i} & \mathrm{i}^{2} & \mathrm{i}^{3} \\ \mathrm{i}^{4} & \mathrm{i}^{6} & \mathrm{i}^{8} \\ \mathrm{i}^{9} & \mathrm{i}^{12} & \mathrm{i}^{15}\end{array}\right|\)

    Since, we have,

    \(\mathrm{i}=\sqrt{-1}\)

    \(\mathrm{i}^{2}=-1, \mathrm{i}^{3}=-\mathrm{i}, \mathrm{i}^{4}=1, \mathrm{i}^{6}=-1, \mathrm{i}^{8}=1, \mathrm{i}^{9}=\mathrm{i}, \mathrm{i}^{12}=1\), and \(\mathrm{i}^{15}=-\mathrm{i}\)

    \(=\left|\begin{array}{ccc}\mathrm{i} & -1 & -\mathrm{i} \\ 1 & -1 & 1 \\ \mathrm{i} & 1 & -\mathrm{i}\end{array}\right|\)

    \(=\mathrm{i}(\mathrm{i}-1)+1(-\mathrm{i}-\mathrm{i})-\mathrm{i}(1+\mathrm{i})\)

    \(=i^{2}-i-2 i-i-i^{2}\)

    \(=-4 i\)

  • Question 9
    4 / -1

    The mean of a distribution is \(22\) and the standard deviation is \(10\). What is the value of variance coefficient?

    Solution

    Given:

    Mean of a distribution \((M)=22\)

    Standard deviation \((S D)=10\)

    Formula used:

    Coefficient of variance\(=\frac{\mathrm{SD}}{\mathrm{M}} \times 100\)

    \(=\frac{10}{22} \times 100\)

    \(=\frac{5}{11} \times 100\)

    \(=\frac{500}{11}=45.4 \% \%\)

    The value of variance coefficient is \(45.45 \%\).

  • Question 10
    4 / -1

    Equation of hyperbola whose latus rectum is 6 and eccentricity is 2:

    Solution

    Here latus rectum \(=\frac{2 \mathrm{b}^{2}}{\mathrm{a}}=6\)

    \(\Rightarrow \mathrm{b}^{2}=3 \mathrm{a}\)

    And eccentricity \(=\sqrt{1+\frac{\mathrm{b}^{2}}{\mathrm{a}^{2}}}=2\)

    \(\Rightarrow 1+\frac{b^{2}}{a^{2}}=4\)

    \(\Rightarrow \frac{a^{2}+b^{2}}{a^{2}}=4\)

    \(\Rightarrow a^{2}+b^{2}=4 a^{2}\)

    \(\Rightarrow 3 \mathrm{a}^{2}=\mathrm{b}^{2}\) .....(1)

    \(\Rightarrow 3 \mathrm{a}^{2}=3 \mathrm{a}\)

    \(\Rightarrow 3 \mathrm{a}^{2}-3 \mathrm{a}=0\)

    \(\Rightarrow 3 \mathrm{a}(\mathrm{a}-1)=0\)

    \(\Rightarrow \mathrm{a}=1\)

    \(\therefore \mathrm{a}^{2}=1\)

    From (1), \(3 \mathrm{a}^{2}=\mathrm{b}^{2}\)

    \(\Rightarrow \mathrm{b}^{2}=3\)

    \(\therefore\) Equation of hyperbola

    \(\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1\)

    \(\Rightarrow \frac{x^{2}}{1}-\frac{y^{2}}{3}=1\)

  • Question 11
    4 / -1

    Find the conjugate of \(\left(i-i^{2}\right)^{3}\)

    Solution

    Let \(z=\left(i-i^{2}\right)^{3}\)

    \(=(i-(-1))^{3}=(1+i)^{3}\)

    Using \((a+b)^{3}=a^{3}+b^{3}+3 a^{2} b+3 a b^{2}\)

    \(\Rightarrow z=1^{3}+i^{3}+3 \times 1^{2} \times i+3 \times 1 \times i^{2}\)

    \(=1-i+3 i-3\)

    \(=-2+2 i\)

    So, conjugate of \((1+i)^{3}\) is \(-2-2 i\).

  • Question 12
    4 / -1

    If \(\cos ^{-1}\left(\frac{p}{a}\right)+\cos ^{-1}\left(\frac{q}{b}\right)=\alpha\), then \(\frac{p^{2}}{a^{2}}+k \cos \alpha+\frac{q^{2}}{b^{2}}=\sin ^{2} \alpha\) where \(k\) is equal to:

    Solution

    Given,

    \(\frac{p^{2}}{a^{2}}+k \cos \alpha+\frac{q^{2}}{b^{2}}=\sin ^{2} \alpha\) ...(i)

    \(\cos ^{-1}\left(\frac{p}{a}\right)+\cos ^{-1}\left(\frac{q}{b}\right)=\alpha\)

    As we know,

    \(\cos ^{-1} x+\cos ^{-1} y=\cos ^{-1}\left(x y-\sqrt{1-x^{2}} \cdot \sqrt{1-y^{2}}\right)\)

    \(\cos ^{-1}\left(\frac{p q}{a b}-\sqrt{1-\frac{p^{2}}{a^{2}}} \sqrt{1-\frac{q^{2}}{b^{2}}}\right)=\alpha\)

    \(\cos \alpha=\left(\frac{p q}{a b}-\sqrt{1-\frac{p^{2}}{a^{2}}} \sqrt{1-\frac{q^{2}}{b^{2}}}\right)\)

    \(\frac{p q}{a b}-\cos \alpha=\sqrt{1-\frac{p^{2}}{a^{2}}} \sqrt{1-\frac{q^{2}}{b^{2}}}\)

    Squaring both sides, we get

    \(\left(\frac{p q}{a b}-\cos \alpha\right)^{2}=\left(\sqrt{1-\frac{p^{2}}{a^{2}}} \sqrt{1-\frac{q^{2}}{b^{2}}}\right)^{2}\)

    \(\frac{(p q)^{2}}{(a b)^{2}}+\cos ^{2} \alpha-2 \frac{p q}{a b} \cos \alpha=\left(1-\frac{p^{2}}{a^{2}}\right)\left(1-\frac{q^{2}}{b^{2}}\right)\)

    \(\frac{(p q)^{2}}{(a b)^{2}}+\cos ^{2} \alpha-2 \frac{p q}{a b} \cos \alpha=1-\frac{p^{2}}{a^{2}}-\frac{q^{2}}{b^{2}}+\frac{(p q)^{2}}{(a b)^{2}}\)

    \(\sin ^{2} \alpha=\frac{p^{2}}{a^{2}}+\frac{q^{2}}{b^{2}}-2 \frac{p q}{a b} \cos \alpha\) ...(ii)

    Comparing equation (i) and (ii), we get

    \(\mathbf{k}=-\frac{2 p q}{a b}\)

  • Question 13
    4 / -1

    If \(f(x)=\left\{\begin{array}{ll}\frac{\sin 3 x}{e^{2 x}-1}, & x \neq 0 \\ k-2, & x=0\end{array}\right.\) is continuous at \(x=0\), then \(k=?\)

    Solution

    Since \(f(x)\) is given to be continuous at \(x=0\),

    \(\lim _{x \rightarrow 0} f(x)=f(0)\)

    Also, \(\lim _{x \rightarrow a^{+}} f(x)=\lim _{x \rightarrow a^{-}} f(x)\) because \(f(x)\) is same for \(x>0\) and \(x<0\)

    \(\therefore \lim _{x \rightarrow 0} f(x)=f(0)\)

    We know that,

    \(\lim _{x \rightarrow 0} \frac{\sin x}{x}=1\)

    \(\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}=1\)

    Therefore,

    \(\lim _{x \rightarrow 0} \frac{\sin 3 x}{e^{2 x}-1}=k-2\)

    Multiplying and dividing by \(3 x\) in numerator and by \(2 x\) in denominator,

    We get,

    \(\lim _{x \rightarrow 0} \frac{\frac{\sin 3 x}{3 x} \times 3 x}{\frac{e^{2 x}-1}{2 x} \times 2 x}=k-2\)

    \(\Rightarrow \frac{3}{2}=k-2\)

    \(\Rightarrow k=\frac{7}{2}\)

  • Question 14
    4 / -1

    If \(\overrightarrow{\mathrm{a}}=4 \hat{\mathrm{i}}+6 \hat{\mathrm{j}}\) and \(\overrightarrow{\mathrm{b}}=3 \hat{\mathrm{j}}+4 \hat{\mathrm{k}}\), then the vector form of the component of \(\overrightarrow{\mathrm{a}}\) along \(\overrightarrow{\mathrm{b}}\) is:

    Solution

    Given:

    \(\vec{a}=4 i+6 j+0 k, \quad b=0 i+3 j+4 k\)

    \(|\vec{b}|=\sqrt{(3 j)^{2}+(4 k)^{2}}\)

    \(=\sqrt{9+16}\left[\because i^{2}=1, j^{2}=1, k^{2}=1\right]\)

    \(=\sqrt{25}\)

    \(=5\)

    \(\vec{a} \cdot \vec{b}=(4 \hat{\mathrm{i}}+6 \hat{\mathrm{j}}+0 \hat{k}) \cdot(\mathrm{b}=0 \hat{i}+3 \hat{\mathrm{j}}+4 \hat{\mathrm{k}})\)

    \(=4 \times 0+6 \times 3+0 \times 4\)

    \(=18\)

    Component of \(\vec{a}\) along \(\vec{b}=\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}=\frac{18}{5}\)

    Component of \(\vec{a}\) along \(\vec{b}=\frac{18}{5} \hat{b}\)

    \(=\frac{18}{5}\left(\frac{\vec{b}}{|\vec{b}|}\right)\left[\because \hat{b}=\left(\frac{\vec{b}}{|\vec{b}|}\right)\right]\)

    \(=\frac{18}{5}\left(\frac{3 \hat{j}+4 \hat{k}}{5}\right)\)

    \(=\frac{18(3 \hat{j}+4 \hat{k})}{25}\)

  • Question 15
    4 / -1

    Using principle of mathematical induction, prove that for all \(n \in N, \frac{n^{5}}{5}+\frac{n^{3}}{3}+\frac{7 n}{15}\) is a:

    Solution

    Given,

    \(P(n): \frac{n^{5}}{5}+\frac{n^{3}}{3}+\frac{7 n}{15}\) is a natural number, for all \(n \in N\).

    \(P(1): \frac{1^{5}}{5}+\frac{1^{3}}{3}+\frac{7(1)}{15}=\frac{3+5+7}{15}=\frac{15}{15}=1\), which is a natural number.

    So, \(P(1)\) is true.

    Let \(P(n)\) be true for some \(n=k\).

    Then \(\frac{k^{5}}{5}+\frac{k^{3}}{3}+\frac{7 k}{15}\) is natural number,

    Now, \(\frac{(k+1)^{5}}{5}+\frac{(k+1)^{3}}{3}+\frac{7(k+1)}{15}\)

    \(=\frac{k^{5}}{5}+\frac{k^{3}}{3}+\frac{7 k}{15}+k^{4}+2 k^{3}+3 k^{2}+2 k+1\)

    \(=P(k)+k^{4}+2 k^{3}+2 k^{2}+2 k+1\)

    = Natural number

    Thus, \(P(k+1)\) is true whenever \(P(n)\) is true.

    So, by the principle of mathematical induction, \(P(n)\) is true for any natural number \(n\).

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now