\(\mathrm{Cu}^{2+}+\mathrm{NH}_3 \stackrel{\mathrm{K}_1}{\rightleftharpoons}\left[\mathrm{Cu}\left(\mathrm{NH}_3\right)\right]^{2+} \)
\( {\left[\mathrm{Cu}\left(\mathrm{NH}_3\right)\right]^{2+}+\mathrm{NH}_3 \stackrel{\mathrm{K}_2}{\rightleftharpoons}\left[\mathrm{Cu}\left(\mathrm{NH}_3\right)_2\right]^{2+}} \)
\(\mathrm{K}_3\)
\({\left[\mathrm{Cu}\left(\mathrm{NH}_3\right)_2\right]^{2+}+\mathrm{NH}_3 \stackrel{\mathrm{K}_3}{\rightleftharpoons}\left[\mathrm{Cu}\left(\mathrm{NH}_3\right)_3\right]^{2+}} \)
\({\left[\mathrm{Cu}\left(\mathrm{NH}_3\right)_3\right]^{2+}+\mathrm{NH}_3 \stackrel{\mathrm{K}_4}{\rightleftharpoons}\left[\mathrm{Cu}\left(\mathrm{NH}_3\right)_4\right]^{2+}}\)
\(\mathrm{Cu}^{2+}+4 \mathrm{NH}_3 \stackrel{\mathrm{K}}{\rightleftharpoons}\left[\mathrm{Cu}\left(\mathrm{NH}_3\right)_4\right]^{2+} v\)
\(\text { So, } \mathrm{K}=\mathrm{K}_1 \times \mathrm{K}_2 \times \mathrm{K}_3 \times \mathrm{K}_4 \)
\(=10^4 \times 1.58 \times 10^3 \times 5 \times 10^2 \times 10^2 \)
\(\therefore \mathrm{K}=7.9 \times 10^{11} \)
Where \(\mathrm{K}=\) Equilibrium constant for formation of \(\left[\mathrm{Cu}\left(\mathrm{NH}_3\right)_4\right]^{2+}\) So, equilibrium constant ( \(\mathrm{K}^{\prime}\) ) for dissociation
\(\text { of }\left[\mathrm{Cu}\left(\mathrm{NH}_3\right)_4\right]^{2+} \text { is } \frac{1}{\mathrm{~K}}\)
\(\mathrm{K}^{\prime}=\frac{1}{\mathrm{~K}} \)
\(\mathrm{~K}^{\prime}=\frac{1}{7.9 \times 10^{11}}=1.26 \times 10^{-12}=\left(\mathrm{x} \times 10^{-12}\right)\)
So, \(x=1.26 \approx 1.0\).