Self Studies

Mathematics Test - 32

Result Self Studies

Mathematics Test - 32
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    Solve: 1 ≤ |x – 1| ≤ 3

    Solution

    Given, 1 ≤ |x – 1| ≤ 3

    ⇒ -3 ≤ (x – 1) ≤ -1 or 1 ≤ (x – 1) ≤ 3

    i.e. the distance covered is between 1 unit to 3 units

    ⇒ -2 ≤ x ≤ 0 or 2 ≤ x ≤ 4

    Therefore, the solution set of the given inequality is

    x ∈ [-2, 0] ∪ [2, 4]

  • Question 2
    1 / -0

    If the determinant \(\left|\begin{array}{lll}{a}_{1} & {~b}_{1} & {c}_{1} \\ {a}_{2} & {~b}_{2} & {c}_{2} \\ {a}_{3} & {~b}_{3} & {c}_{3}\end{array}\right|=\Delta\), then \(\left|\begin{array}{lll}{x} {a}_{1} & {yb}_{1} & {zc}_{1} \\ {xa}_{2} & {yb}_{2} & {zc}_{2} \\ {xa}_{3} & {yb}_{3} & {zc}_{3}\end{array}\right|=?({x}, {y}, {z} \neq 0\) or \(1\) )

    Solution

    As we know,

    Using the properties of determinants, if a row/column of a given matrix is multiplied by a scalar \(k\), then the value of the determinant is also multiplied by \(k\).

    \(\because\left|\begin{array}{lll}{a}_{1} & {~b}_{1} & {c}_{1} \\ {a}_{2} & {~b}_{2} & {c}_{2} \\ {a}_{3} & {~b}_{3} & {c}_{3}\end{array}\right|=\Delta\) \( ..... (1) \)

    Then, multiplying the equation \( (1) \) by \(x\) in the first column, \(y\) in the second column and \(z\) in the third column, we get

    \( \left|\begin{array}{lll}{xa}_{1} & {yb}_{1} & {zc}_{1} \\ {xa}_{2} & {yb}_{2} & {zc}_{2} \\ {xa}_{3} & {yb}_{3} & {zc}_{3}\end{array}\right|\)

    Taking the common from equation \( (1) \), \(x\) from the first column, \(y\) from the second column and \(z\) from the third column, we get

    \(= {xyz}\left|\begin{array}{lll}{a}_{1} & {~b}_{1} & {c}_{1} \\ {a}_{2} & {~b}_{2} & {c}_{2} \\ {a}_{3} & {~b}_{3} & {c}_{3}\end{array}\right|\)

    \(= {xyz} \Delta\)

  • Question 3
    1 / -0

    Find the sum of the series whose nth term is \((2 n-1)^{2}\).

    Solution

    Given,

    \(a_{n}=(2 n-1)^{2}\)

    As we know that,

    \(S_{n}=\sum a_{n}\)

    \(\Rightarrow S_{n}=\sum_{k=1}^{n} a_{k}=\sum_{k=1}^{n}\left[4 k^{2}-4 k+1\right]\)

    \(\Rightarrow S_{n}=-4 \sum_{k=1}^{n} k+4 \sum_{k=1}^{n} k^{2}+\sum_{k=1}^{n} 1\)

    As we know,

    \(\sum \mathrm{n}^{2}\) = \(\frac{n(n+1)(2 n+1)}{8}\)

    \(\sum \mathrm{n}\) = \(\frac{n (n+1)}{2}\)

    \(\sum 1\) =n

    \(\Rightarrow S_{n}=\frac{n \cdot(2 n+1) \cdot(2 n-1)}{3}\)

  • Question 4
    1 / -0

    Consider the following statements:

    1. \(A=\{1,3,5\}\) and \(B=\{2,4,7\}\) are equivalent sets.

    2. \(A=\{1,5,9\}\) and \(B=\{1,5,5,9,9\}\) are equal sets.

    Which of the above statements is/are correct?

    Solution

    As we know,

    Equivalent set: When two sets, for example, A and B have the same cardinality if there exists an objective function from set A to B are called Equivalent set, i.e \(n(A)=n(B)\).

    Equal set: Two sets for example \(A\) and \(B\) can be equal only if each element of set \(A\) is also the element of the set \(B\). If two sets are the subsets of each other, they are said to be equal. So, it can be written as,

    \(A=B\)

    \(\mathrm{A} \subset \mathrm{B}\) and \(\mathrm{B} \subset \mathrm{A} \Longleftrightarrow \mathrm{A}=\mathrm{B}\)

    From the defination of equivalent and equal set we can see that;

    Statement 1 is true because the number of elements in \(A=\) Number of elements in \(B=3\)

    Statement 2 is true because \(\{1,5,9\} \in A\) and \(\{1,5,9\} \in B\)

  • Question 5
    1 / -0

    Let \(y=\log _e\left(\frac{1-x^2}{1+x^2}\right),-1

    Solution

    \( y=\log _e\left(\frac{1-x^2}{1+x^2}\right) \\\)

    \( \frac{d y}{d x}=y^{\prime}=\frac{-4 x}{1-x^4}\)

    Again,

    \(\frac{d^2 y}{d x^2}=y^{\prime \prime}=\frac{-4\left(1+3 x^4\right)}{\left(1-x^4\right)^2}\)

    Again

    \(y^{\prime}-y^{\prime \prime}=\frac{-4 x}{1-x^4}+\frac{4\left(1+3 x^4\right)}{\left(1-x^4\right)^2}\)

    at \(\mathrm{x}=\frac{1}{2}\) '

    \(\mathrm{y}^{\prime}-\mathrm{y}^{\prime \prime}=\frac{736}{225}\)

    Thus \(225\left(y^{\prime}-y^{\prime \prime}\right)=225 \times \frac{736}{225}=736\)

  • Question 6
    1 / -0

    \(\text { The value of } \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(\frac{1+\sin ^2 x}{1+\pi^{\sin x}}\right) d x \text { is }\)

    Solution

    \(\begin{aligned} & I=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1+\sin ^2 x}{1+\pi^{\sin x}} d x \ldots \text { (i) } \\ & I=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1+\sin ^2(-x)}{1+\pi^{\sin (-x)}}\left[\because \int_a^b f(x) d x=\int_a^b f(a+b-x) d x\right] \\ & \frac{\pi}{2} \frac{1+\sin x}{-\frac{\pi}{2}} d x \\ & I=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2} x} \frac{\pi^{\sin x}\left(1+\sin ^2 x\right)}{1+\pi^{\sin x}} d x \ldots \text { (ii) }\end{aligned}\)

    Adding Eqs. (i) and (ii), we get

    \(\left.2 I=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{(1+\pi \sin x}{(1+\pi \sin x}\right)\left(1+\sin ^2 x\right) \\\)

    \( \Rightarrow 2 I=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(1+\sin ^2 x\right) d x \\\)

    \( \Rightarrow 2 I=[x]{ }_{-\frac{\pi}{2}}^{\frac{\pi}{2}}+2 \int_0^{\frac{\pi}{2}} \sin ^2 x d x \\\)

    \( {\left[\because \sin ^2 x \text { is an even function, so } \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin ^2 d x=2 \int_0^{\frac{\pi}{2}} \sin ^2 x d x\right]} \\\)

    \( \Rightarrow I=\frac{1}{2}\left(\frac{\pi}{2}-\left(-\frac{\pi}{2}\right)\right)+\frac{1}{2} \int_0^{\frac{\pi}{2}}(1-\cos 2 x) d x \\\)

    \( \Rightarrow I=\frac{\pi}{2}+\frac{1}{2}\left[x-\frac{\sin 2 x}{2}\right]_0^{\frac{\pi}{2}} \\\)

    \( \frac{\pi}{2}+\frac{1}{2}\left[\left(\frac{\pi}{2}-0\right)-(0-0)\right] \\\)

    \( I=\frac{\pi}{2}+\frac{\pi}{4}=\frac{3 \pi}{4}\)

  • Question 7
    1 / -0

    Using principle of mathematical induction, prove that for all \((2 \mathrm{n}+7)<(\mathrm{n}+3)^{2}\).

    Solution

    Let the given statement be \(P(n)\), i.e.,

    \(\mathrm{P}(n):(2 n+7)<(n+3)^{2}\)

    Put \(n=1\) in \(\mathrm{P}(n)\)

    \(2.1+7=9<(1+3)^{2}=16\), which is true.

    Let \(\mathrm{P}(k)\) be true for some positive integer \(k\),

    \((2 k+7)<(k+3)^{2} \ldots(1)\)

    We shall now prove that \(\mathrm{P}(k+1)\) is true whenever \(\mathrm{P}(k)\) is true.

    \(\{2(k+1)+7\}=(2 k+7)+2\)

    \(\Rightarrow \{2(k+1)+7\}=(2 k+7)+2<(k+3)^{2}+2\) \(\quad\) [using (i).]

    \(\Rightarrow 2(k+1)+7

    \(\Rightarrow 2(k+1)+7

    Now, \(k^{2}+6 k+11

    \(\therefore 2(k+1)+7<(k+4)^{2}\)

    \(2(k+1)+7<\{(k+1)+3\}^{2}\)

    Thus, \(\mathrm{P}(k+1)\) is true whenever \(\mathrm{P}(k)\) is true.

    So, by the principle of mathematical induction, statement \(\mathrm{P}(n)\) is true for all natural numbers.

  • Question 8
    1 / -0

    Evaluate the integral\(\int_{1}^{4} \frac{x}{x^{2}+1} d x\).

    Solution

    Let, \( I=\int_{2}^{4} \frac{x}{x^{2}+1} d x \)

    \(=\frac{1}{2} \int_{2}^{4} \frac{2 x}{x^{2}+1} d x\)

    Put \(x^2=t\)

    Differentiating with respect to \(x\).

    \(2x=\frac{dt}{dx}\)

    \(2xdx=dt\)

    So,

    \(\int_{2}^{4} \frac{x}{x^{2}+1} d x=\frac{1}{2}\int_{2}^{4}\frac{dt}{t+1}\)

    \(\left[\frac{1}{2}\log(t)\right]_{2}^{4}\)

    \(=\left[\frac{1}{2} \log \left(1+x^{2}\right)\right]_{2}^{4}=F(x)\)

    Put the limit,

    \(I=F(4)-F(2) \)

    \(=\frac{1}{2}\left[\log \left(1+4^{2}\right)-\log \left(1+2^{2}\right)\right] \)

    \(=\frac{1}{2}[\log 17-\log 5] \)

    \(=\frac{1}{2} \log \left(\frac{17}{5}\right)\)

  • Question 9
    1 / -0

    The expression \(\frac{\cot x+\operatorname{cosec} x-1}{\cot x-\operatorname{cosec} x+1}\) is equal to:

    Solution

    Given,

    \(\frac{\cot x+\operatorname{cosec} x-1}{\cot x-\operatorname{cosec} x+1}\)

    We know that,

    \(\operatorname{cosec}^{2} x=1+\cot ^{2} x\)

    Therefore,

    \(\frac{\cot x+\operatorname{cosec} x-1}{\cot x-\operatorname{cosec} x+1}=\frac{\cot x+\operatorname{cosec} x-\operatorname{cosec}^{2} x-\cot ^{2} x}{\cot x-\operatorname{cosec} x+\operatorname{cosec}^{2} x-\cot ^{2} x}\)

    \(\Rightarrow \frac{\cot x+\operatorname{cosec} x-1}{\cot x-\operatorname{cosec} x+1}=\frac{\cot x+\operatorname{cosec} x-\operatorname{cosec}^{2} x-\cot ^{2} x}{\cot x-\operatorname{cosec} x+1}\)

    \(\Rightarrow \frac{\cot x+\operatorname{cosec} x-1}{\cot x-\operatorname{cosec} x+1}=\frac{\cot x+\operatorname{cosec} x-(\operatorname{cosec} x-\cot x)(\operatorname{cosec} x+\cot x)}{\cot x-\operatorname{cosec} x+1}\)

    \(\Rightarrow \frac{\cot x+\operatorname{cosec} x-1}{\cot x-\operatorname{cosec} x+1}=\frac{(\cot x+\operatorname{cosec} x)(\operatorname{cotx}-\operatorname{cosec} x+1)}{(\cot x-\operatorname{cosec} x+1)}\)

    \(\Rightarrow \frac{\cot x+\operatorname{cosec} x-1}{\cot x-\operatorname{cosec} x+1}=(\cot x+\operatorname{cosec} x)\)

    \(\Rightarrow \frac{\cot x+\operatorname{cosec} x-1}{\cot x-\operatorname{cosec} x+1}=\frac{\cos x+1}{\sin x}\)

  • Question 10
    1 / -0

    If \(\int_0^1 \frac{1}{\sqrt{3+x}+\sqrt{1+x}} d x=a+b \sqrt{2}+c \sqrt{3}\), where \(a, b, c\) are rational numbers, then \(2 a+3 b-4 c\) is equal to :

    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now