Self Studies

Mathematics Test - 44

Result Self Studies

Mathematics Test - 44
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    Find the equation of the line through the point \((-1,5)\) and making an intercept of \(-2\) on the \(y\)-axis?

    Solution

    As we know that, the equation of a line whose slope is \(m\) and which makes an intercept \(c\) on the \(y\) axis is given by:

    \(y=m x+c\)

    Let the slope of the required line be \(m\).

    Here, we have \(c=-2\)

    So, the equation the required line is \(y=mx-2\).....(i)

    The required line passes through the point \((-1,5)\)

    Therefore,

    Substitute \(x=-1\) and \(y=5\) will satisfy the equation (i).

    \( 5=-m-2\)

    \(\Rightarrow m=-7\)

    \(\therefore\)The equation of the required line is \(7 x+y+2=0\).

  • Question 2
    1 / -0

    Find the mean deviation for the given data is p, 6, 6, 7, 8, 11, 15, 16, if value of mean of the data is 3 times of the ‘p’.

    Solution

    Mean Deviation for ungrouped data:

    For 'N' observation \(x_{1}, x_{2} \ldots \ldots \ldots \ldots . x_{n}\), the mean deviation about their mean \(\bar{x}\) is given by \(M . D=\frac{\sum_{i=1}^{n}\left|x_{i}-\bar{x}\right|}{N}\)

    where, \(N\) is the number of observations

    Given data of numbers are \(p, 6,6,7,8,11,15\), and 16.

    Mean \(\bar{x}=\frac{\text { Sum of all the observations }}{\text { Total number of observations }}\)

    \(=\frac{p+6+6+7+8+11+15+16}{8}=3 p\)

    \(\therefore 23 p=69\)

    \(\Rightarrow p =3\)

    So, given data is \(3,6,6,7,8,11,15,16\) and mean is \(3 p\), i.e., 9.

    \(\therefore\) Mean deviation \(=\frac{|3-9|+|6-9|+|6-9|+|7-9|+|8-9|+|11-9|+|15-9|+|16-9|}{8}\)

    Mean deviation \(=\frac{\left|x_{i}-\bar{x}\right|}{n}=\frac{30}{8}=3.75\)

  • Question 3
    1 / -0

    Let \(f: R \rightarrow R\) be defined as \(f(x)=e^{-x} \sin x\). If \(F:[0,1] \rightarrow R\) is a differentiable function, such that \(F(x)=\int_0^x f(t) d t\), then the value of \(\int_0^1\left[F^{\prime}(x)+f(x)\right] e^x d x\) lies in the interval:

    Solution

    Given, \(f(x)=e^{-x} \cdot \sin x\)

    and \(F(x)=\int_0^x f(t) d t\)

    \(\because F(x)\) is differentiable function.

    \(\therefore \mathrm{F}^{\prime}(\mathrm{x})=\mathrm{f}(\mathrm{x}) \times 1-\mathrm{f}(0) \times 0\) (using Newton-Leibnitz rule)

    \(\Rightarrow F^{\prime}(\mathrm{x})=\mathrm{f}(\mathrm{x}) \ldots(\mathrm{i})\)

    Let \(I=\int_0^1\left[F^{\prime}(x)+f(x)\right] e^x d x\)

    \(=\int_0^1[f(x)+f(x)] e^x d x=\int_0^1 2 \cdot f(x) \cdot e^x d x[\) from Eq. (i) \(]\)

    \(\Rightarrow \mathrm{I}=2 \cdot \int_0^1 \mathrm{f}(\mathrm{x}) \cdot \mathrm{e}^{\mathrm{x}} \mathrm{dx}\)

    \(=2 \cdot \int_0^1 \mathrm{e}^{-\mathrm{x}} \sin \mathrm{x} \cdot \mathrm{e}^{\mathrm{x}} \mathrm{d} \mathrm{x}\)

    \(=2 \int_0^1 \sin x d x=2[-\cos x]_0^1\)

    \(=2[-(\cos 1-\cos 0)]=2(1-\cos 1)\)

    \(\Rightarrow 1=2 \cdot\left[1-\left(1-\frac{(1)^2}{2 !}+\frac{(1)^4}{4 !}-\frac{(1)^6}{6 !}+\frac{(1)^8}{8 !}-\ldots\right]\right.\)

    [using expansion of \(\cos x\) i.e.,

    \(\cos x=1-\frac{x^2}{2 !}+\frac{x^4}{4 !}-\frac{x^6}{6 !}+\frac{x^8}{8 !}-\ldots 1\)

    \(I=2\left[1-1+\frac{1}{2 !}-\frac{1}{4 !}+\frac{1}{6 !}-\frac{1}{8 !}+\ldots\right]\)

    \(\Rightarrow \mathrm{I}=2\left(\frac{1}{2}-\frac{1}{24}+\frac{1}{720}-\ldots\right)\)

    Now, \(\mathrm{I}<2\left(\frac{1}{2}-\frac{1}{24}+\frac{1}{720}\right)\)

    \(\Rightarrow I<\left(1-\frac{1}{12}+\frac{1}{360}\right) \Rightarrow I<\frac{360-30+1}{360}\)

    \(\Rightarrow \mathrm{I}<\frac{331}{360} \ldots\) (ii)

    Also, \(I>2\left(\frac{1}{2}-\frac{1}{24}\right) \Rightarrow I>\left(1-\frac{1}{12}\right)\)

    \(\Rightarrow I>\frac{11}{12} \Rightarrow I>\frac{11 \times 30}{12 \times 30}\)

    \(\Rightarrow \mathrm{I}>\frac{330}{360}\)...

    From Eqs. (ii) and (iii), we get

    \(\frac{330}{360}< I <\frac{331}{360}\)

  • Question 4
    1 / -0

    If \(5 \times{ }^{{n}} {P}_{4}=7 \times{ }^{({n}-1)} {P}_{4}\), then find the value of \({n}\).

    Solution

    We know that:

    \({ }^{{n}} {P}_{{r}}=\frac{{n} !}{({n}-{r}) !}={n} \times({n}-1) \times \ldots \times({n}-{r}+1)\)

    Given that:

    \(5 \times{ }^{{n}} {P}_{4}=7 \times{ }^{({n}-1)} {P}_{4}\)

    \(5 \times n \times(n-1) \times(n-2) \times(n-3)=7 \times(n-1) \times(n-2) \times(n-3) \times(n-4)\)

    \(5 \times n=7 \times(n-4)\)

    \(5 n=7 n-28\)

    \(2 n=28\)

    \({n}=14\)

  • Question 5
    1 / -0

    The equation \(\tan ^{-1}(1+x)+\tan ^{-1}(1-x)=\frac{\pi}{2}\) is satisfied by:

    Solution

    Given,

    \(\tan ^{-1}(1+x)+\tan ^{-1}(1-x)=\frac{\pi}{2}\)

    \(\Rightarrow \tan ^{-1}\left(\frac{1+x+1-x}{1-(1+x)(1-x)}\right)=\tan ^{-1}\left(\frac{1}{0}\right) \)\(\quad\quad(\because\tan ^{-1} \mathrm{~A}+\tan ^{-1} \mathrm{~B}=\tan ^{-1}\left(\frac{A+\mathrm{B}}{1-\mathrm{AB}}\right)\) where \(\mathrm{A}>0, \mathrm{~B}>0 \& \mathrm{AB}<1)\)

    \(\Rightarrow \frac{2}{1-1+x^{2}}=\frac{1}{0} \)

    \(\Rightarrow x^{2}=0 \)

    \(\Rightarrow x=0\)

  • Question 6
    1 / -0
    \(\int \frac{\left(\sin ^{-1} x\right)^{3}}{\sqrt{1-x^{2}}} d x\) is equal to:
    Solution
    \(I=\int \frac{\left(\sin ^{-1} x\right)^{3}}{\sqrt{1-x^{2}}} d x\)
    Let, \(\sin ^{-1} x=t\) by differentiating both the sides by \(x\), we get,
    \(\frac{d}{d x}\left(\sin ^{-1} x\right)=\frac{d t}{d x}\)
    \(\Rightarrow \frac{d x}{\sqrt{\left(1-x^{2}\right)}}=d t\)
    \(\Rightarrow I=\int t^{3} d t=\frac{t^{4}}{4}+C\)
    Replace \(t\) by \(\sin ^{-1} x\)
    \(\Rightarrow I=\frac{\left(\sin ^{-1} x\right)^{4}}{4}+C\)
  • Question 7
    1 / -0

    Let \(\mathrm{A}\) and \(\mathrm{B}\) be two events such that \(\mathrm{P}(\mathrm{B} \mid \mathrm{A})=\frac{2}{5}, \mathrm{P}(\mathrm{A} \mid \mathrm{B})=\frac{1}{7}\) and \(\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\frac{1}{9} \cdot\) Consider

    (S1) \(\mathrm{P}\left(\mathrm{A}^{\prime} \cup \mathrm{B}\right)=\frac{5}{6}\),

    (S2) \(\mathrm{P}\left(\mathrm{A}^{\prime} \cap \mathrm{B}^{\prime}\right)=\frac{1}{18}\)

    Then

    Solution

    \(\begin{aligned} & P(A / B)=\frac{1}{7} \Rightarrow \frac{P(A \cap B)}{P(B)}=\frac{1}{7} \\ & \Rightarrow P(B)=\frac{7}{9} \\ & P(B / A)=\frac{2}{5} \Rightarrow \frac{P(A \cap B)}{P(A)}=\frac{2}{5} \\ & P(A)=\frac{5}{2} \cdot \frac{1}{9}=\frac{5}{18} \\ & S 2: P\left(A^{\prime} \cap B^{\prime}\right)=\frac{1}{18} \\ & S 1: \text { and } P\left(A^{\prime} \cup B\right)=\frac{1}{9}+\frac{6}{9}+\frac{1}{18}=\frac{5}{6} .\end{aligned}\)

  • Question 8
    1 / -0

    If \(p\) is a natural number, then prove that \(p^{n+1}+(p+1) 2^{n-1}\) is divisible by \(p^{2}+p+1\) for every ________ \(n\).

    Solution

    \(P(n): p^{n+1}+(p+1)^{2 n-1}\) is divisible by \(p^{2}+p+1\)

    For \(\mathrm{n}=1\)

    \(P(1): p^{2}+p+1 ;\) which is divisible by \(p^{2}+p+1\)

    So, \(P(1)\) is true.

    Let \(\mathrm{P}(\mathrm{K})\) be true.

    Then \(p^{k+1}+(p+1)^{2 k-1}\) is divisible by \(p^{2}+p+1\) \(p^{k+1}+(p+1)^{2 k-1}=\left(p^{2}+p+1\right) m\)

    Now, \(p^{k+2}+(p+1)^{2 k+1}\)

    \(=p \times p^{k+1}+(p+1)^{2 k-1} \times(p+1)^{2} \)

    \(=p\left(p^{2}+p+1\right) m-p(p+1)^{2 k-1}+(p+1)^{2 k-1}(p+1)^{2} \)

    \(=p\left(p^{2}+p+1\right) m-p(p+1)^{2 k-1} \)

    \(+(p+1)^{2 k-1}\left(p^{2}+2 p+1\right) \)

    \(=p\left(p^{2}+p+1\right) m+(p+1)^{2 k-1}\left(p^{2}+p+1\right) \)

    \(=\left(p^{2}+p+1\right)\left[m p+(p+1)^{2 k-1}\right] \)

    \(=\left(p^{2}+p+1\right) \times(\text { an integer })\)

    Therefore, \(P(k+1)\) is also true whenever \(P(k)\) is true.

  • Question 9
    1 / -0

    If \(f(x)=\frac{\left(\tan 1^{\circ}\right) x+\log _e(123)}{x \log _e(1234)-\left(\tan 1^{\circ}\right)}, x>0\), then the least value of \(\mathrm{f}(\mathrm{f}(\mathrm{x}))+\mathrm{f}\left(\mathrm{f}\left(\frac{4}{\mathrm{x}}\right)\right)\) is:

    Solution

    \(\begin{aligned} & f(x)=\frac{(\tan 1) x+\log 123}{x \log 1234-\tan 1} \\ & \text { Let } A=\tan 1, B=\log 123, C=\log 1234 \\ & f(x)=\frac{A x+B}{x C-A} \\ & f(f(x))=\frac{A\left(\frac{A x+B}{x C-A}\right)+B}{C\left(\frac{A x+B}{C X-A}\right)-A} \\ & =\frac{A^2 x+A B+x B C-A B}{A C x+B C-A C x+A^2} \\ & =\frac{x\left(A^2+B C\right)}{\left(A^2+B C\right.}=x \\ & f(f(x))=x \\ & f\left(f\left(\frac{4}{x}\right)\right)=\frac{4}{x} \\ & f(f(x))+f\left(f\left(\frac{4}{x}\right)\right) \\ & A M \geq G M \\ & x+\frac{4}{x} \geq 4\end{aligned}\)

  • Question 10
    1 / -0

    The equation of tangents to the curve \(y\left(1+x^{2}\right)=2-x\), where it crosses \(x\)-axis is:

    Solution

    Given,

    \(y\left(1+x^{2}\right)=2-x\).....(i)

    \(y \cdot(0+2 x)+\left(1+x^{2}\right) \cdot \frac{d y}{d x}=0-1\) [on differentiating w.r.t. \(x\) ]

    \(\Rightarrow 2 x y+\left(1+x^{2}\right) \frac{d y}{d x}=-1\)

    \(\Rightarrow \frac{d y}{d x}=\frac{-1-2 x y}{1+x^{2}} \ldots\) (ii)

    Since, the given curve passes through \(x\) - axis i.e., \(y=0\).

    \(0\left(1+x^{2}\right)=2-x\) [using(i)]

    \(x=2\)

    So, the curve passes through the point \((2,0)\)

    \(\left(\frac{d y}{d x}\right)_{(2,0)}=\frac{-1-2 \times 0}{1+2^{2}}=-\frac{1}{5}=\) slope of the curve

    Slope of tangent to the curve \(=-\frac{1}{5}\)

    Equation of tangent of the curve passing through \((2,0)\) is:

    \(y-0=-\frac{1}{5}(x-2)\)

    \(\Rightarrow 5 y=-x+2\)

    \(\Rightarrow 5 y+x=2\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now