Given, \(f(x)=e^{-x} \cdot \sin x\)
and \(F(x)=\int_0^x f(t) d t\)
\(\because F(x)\) is differentiable function.
\(\therefore \mathrm{F}^{\prime}(\mathrm{x})=\mathrm{f}(\mathrm{x}) \times 1-\mathrm{f}(0) \times 0\) (using Newton-Leibnitz rule)
\(\Rightarrow F^{\prime}(\mathrm{x})=\mathrm{f}(\mathrm{x}) \ldots(\mathrm{i})\)
Let \(I=\int_0^1\left[F^{\prime}(x)+f(x)\right] e^x d x\)
\(=\int_0^1[f(x)+f(x)] e^x d x=\int_0^1 2 \cdot f(x) \cdot e^x d x[\) from Eq. (i) \(]\)
\(\Rightarrow \mathrm{I}=2 \cdot \int_0^1 \mathrm{f}(\mathrm{x}) \cdot \mathrm{e}^{\mathrm{x}} \mathrm{dx}\)
\(=2 \cdot \int_0^1 \mathrm{e}^{-\mathrm{x}} \sin \mathrm{x} \cdot \mathrm{e}^{\mathrm{x}} \mathrm{d} \mathrm{x}\)
\(=2 \int_0^1 \sin x d x=2[-\cos x]_0^1\)
\(=2[-(\cos 1-\cos 0)]=2(1-\cos 1)\)
\(\Rightarrow 1=2 \cdot\left[1-\left(1-\frac{(1)^2}{2 !}+\frac{(1)^4}{4 !}-\frac{(1)^6}{6 !}+\frac{(1)^8}{8 !}-\ldots\right]\right.\)
[using expansion of \(\cos x\) i.e.,
\(\cos x=1-\frac{x^2}{2 !}+\frac{x^4}{4 !}-\frac{x^6}{6 !}+\frac{x^8}{8 !}-\ldots 1\)
\(I=2\left[1-1+\frac{1}{2 !}-\frac{1}{4 !}+\frac{1}{6 !}-\frac{1}{8 !}+\ldots\right]\)
\(\Rightarrow \mathrm{I}=2\left(\frac{1}{2}-\frac{1}{24}+\frac{1}{720}-\ldots\right)\)
Now, \(\mathrm{I}<2\left(\frac{1}{2}-\frac{1}{24}+\frac{1}{720}\right)\)
\(\Rightarrow I<\left(1-\frac{1}{12}+\frac{1}{360}\right) \Rightarrow I<\frac{360-30+1}{360}\)
\(\Rightarrow \mathrm{I}<\frac{331}{360} \ldots\) (ii)
Also, \(I>2\left(\frac{1}{2}-\frac{1}{24}\right) \Rightarrow I>\left(1-\frac{1}{12}\right)\)
\(\Rightarrow I>\frac{11}{12} \Rightarrow I>\frac{11 \times 30}{12 \times 30}\)
\(\Rightarrow \mathrm{I}>\frac{330}{360}\)...
From Eqs. (ii) and (iii), we get
\(\frac{330}{360}< I <\frac{331}{360}\)